• 新颖的设计有助于开发强大的微电池

    将大型电池的电化学性能转化为微型电源一直是一项长期存在的技术挑战,限制了电池为微型设备、微型机器人和植入式医疗设备供电的能力。伊利诺伊大学香槟分校的研究人员创造了一种高压微型电池 (> 9 V),具有高能量和高功率密度,是任何现有电池设计都无法比拟的。

  • 为设计更好的高性能电池而开发的新型显微镜

    锂离子电池改变了日常生活——几乎每个人都拥有智能手机,路上可以看到更多的电动汽车,它们还能在紧急情况下保持发电机运转。随着越来越多的便携式电子设备、电动汽车和大规模电网实施上线,对安全且价格合理的高能量密度电池的需求持续增长。

  • 聚硫酸盐可广泛用于各种高性能电子元件的原料

    根据斯克里普斯研究所和劳伦斯伯克利国家实验室的化学家和材料科学家的一项研究,一种可以形成柔性薄膜的新型聚硫酸盐化合物具有的特性使其成为许多高性能电子元件的首选材料。 LBNL)。

  • 无序晶体镁铬氧化物有望用于未来的电池技术

    UCL 和伊利诺伊大学芝加哥分校的研究人员发现,微小、无序的氧化镁铬颗粒可能是新型镁电池储能技术的关键,与传统锂离子电池相比,这种技术可能具有更高的容量。 报告了一种新的、可扩展的方法来制造一种材料,这种材料可以在高压下可逆地储存镁离子,这是阴极的决定性特征。

  • 人类向新型量子模拟器迈出了激动人心的一步

    现代物理学中一些最激动人心的话题,例如高温超导体和量子计算机的一些提议,归结为当这些系统在两个量子态之间徘徊时发生的奇异事物。 不幸的是,事实证明,了解在这些点(称为量子临界点)发生的事情具有挑战性。数学往往太难解决,今天的计算机并不总是能够模拟发生的事情,特别是在涉及任何可观数量原子的系统中。

  • 最新的收购为 NI 带来了 MultiSim 工具

    得克萨斯州奥斯汀——为了更紧密地集成经常分离的设计和测试岛,美国国家仪器公司 (National Instruments Corp.) 收购了总部位于多伦多的 Electronics Workbench,后者是广受欢迎的 MultiSim 板级仿真包的供应商,两家公司将于今天宣布。 出售条款没有披露。MultiSim 拥有大约 180,000 个席位,大致分为商业印刷电路板设计师以及两年制和四年制工程学院的教授和学生。

  • 为可以吞咽的传感器提供动力,助力智慧医疗

    可摄入传感器的未来可能是硅基电路和可生物降解材料的混合体,电池由营养物质制成并依靠胃液运行。 至少,这是卡内基梅隆大学材料科学和生物医学工程助理教授克里斯托弗贝廷格的愿景。他的团队正在研究可食用电子产品以及为它们供电的方法。可摄入传感器可以提供细菌感染早期迹象的肠道检查,寻找克罗恩病等胃肠道疾病的症状,监测药物的摄入,甚至研究人体内的微生物组。

  • 如何快速安全地为电池充电,充电指南

    任何爱好者都可以快速为电池充电,但您能否在不发生爆炸、过热或电池循环寿命大幅下降的情况下充电? 许多公司已经管理通常使用专门算法的快速充电技术。这些算法考虑了电池的化学性质和某种非标准充电率曲线。许多设备制造商和无线运营商现在为智能手机设备提供至少两年的保修,将 800 次循环设置为电池的电池循环寿命。

  • 超导性在“魔角”石墨烯中开启和关闭

    一个快速的电脉冲完全翻转了材料的电子特性,开辟了通往超快、受大脑启发的超导电子产品的途径。 物理学家发现了一种在魔角石墨烯中开启和关闭超导性的新方法。这一发现可能会导致超快、节能的超导晶体管用于“神经形态”电子产品,其工作方式类似于人脑中神经元的快速开/关放电。这一发现可能会导致超快、高能效的超导晶体管用于神经形态设备——电子设备的设计方式类似于人脑中神经元的快速开/关放电。

  • 下一代氮化镓 (GaN)半桥 IC 可以提供 2 MHz 的开关频率

    传统上,电源设计人员必须使用分立晶体管和多个外部元件(例如驱动器、电平转换器、传感器、自举电路和外围设备)构建半桥电路。Navitas Semiconductor最近宣布推出业界首款 GaNSense 半桥功率 IC,采用紧凑型 6×8-mm 表面贴装 PQFN 封装。

  • 超越锂:一种很有前途的镁可充电电池正极材料

    作为下一代电池的能量载体,镁是很有前途的候选者。然而,镁电池若要替代锂离子电池,还需提高循环性能和容量。为此,一个研究团队专注于一种具有尖晶石结构的新型正极材料。经过广泛的表征和电化学性能实验,他们发现了一种特殊的成分,可以为高性能镁充电电池打开大门。

  • 不要忽视对小型低容量电池的需求

    当前很多媒体关注电池,以及重要的研发工作和商业投资,专注于高容量、功率密集的可充电(二次)电池。当然,这种观点很有意义,因为它们用于电动汽车 (EV) 和其他更高功率的、通常是移动的情况。

  • 电池应用:不要忽视不起眼的电池连接器

    我们经常谈论和担心电池:它们的寿命、安全问题、充电/放电、温度影响和许多其他问题,以至于很容易忘记电池供应链中的一个重要环节:连接器。过去一周发生的两件事,一个在当前范围的极低端,另一个在更高的范围,提醒我,如果没有牢固的连接,最好的电池也是无用的。

  • SiC 与半导体垂直整合的复兴,先进 SiC 解决方案的需求不断增长

    碳化硅 (SiC) 半导体在处理高功率和导热方面比电动汽车 (EV) 系统和能源基础设施中的传统硅更有效的能力现已得到广泛认可。SiC 器件有助于更有效地将电力从电池传输到 EV 系统组件中的电机,从而将 EV 的行驶里程增加 5% 至 10%。

  • SiC 和 GaN:两种半导体的故事以及以后发展的预测

    在过去的几十年里,碳化硅和氮化镓技术的进步以发展、行业接受度的提高和有望带来数十亿美元的收入为特征。第一个商用 SiC 器件于 2001 年以德国英飞凌的肖特基二极管形式问世。随之而来的是快速发展,到 2026 年,该行业有望超过 40 亿美元。

发布文章