门驱动器通常由输入级、隔离级和输出级构成。输入级接收来自控制器的控制信号,并将其进行必要的逻辑处理。
许多半导体制造商的数据表,包括ADI的数据表,在规格表中指定放大器的当前噪声,通常频率为1千赫兹。目前的噪音规范来自哪里并不总是很清楚。它是被测量的还是理论的?一些制造商在计算这个数字时是透明的
无干扰数据通信和个人安全是电子技术在典型工业环境中面临的两大挑战。强烈的电磁场、过电压、瞬态电压和高电磁兼容性(EMC)干扰是今天的事情。例如,如果通信电缆不顺利地靠近频率逆变器的控制电缆,则脉冲被电容耦合,通信电缆中的信号与频率逆变器的脉冲模式振荡。这种干扰可以很快达到可能发生严重故障甚至危及人员安全的程度。
如今,强大的充电宝无处不在,被手机爱好者广泛使用。这些充电宝的输出电压固定在5V。然而,一个充电宝也可以作为一个12V的电源,使用一个小型和高效的提升转换电路板。
在设计工业应用的系统级、独立的I/O解决方案时,如工艺控制、工厂自动化或建筑控制系统,有许多领域需要考虑。这包括功率耗散、数据隔离和形式因素。图1展示了使用 AD74115H 以及 ADP1034 在一个独立的单通道软件配置I/O解决方案中。
在图像处理领域,双线性插值(Bilinear Interpolation)是一种广泛应用的图像缩放算法,它通过计算源图像中四个最近邻像素的加权平均值来生成目标图像中的像素值。相比于最近邻插值,双线性插值能够生成更加平滑、质量更高的缩放图像。FPGA(现场可编程门阵列)以其并行处理能力和灵活性,成为实现双线性插值算法的理想平台。本文将深入探讨FPGA上实现双线性插值算法的具体方法,特别是针对整数倍放大和缩小的场景。
在电子工程领域,去耦电容器(Decoupling Capacitor)是一个不可或缺的元件,其重要性常常在电路设计和调试过程中被反复强调。然而,对于初学者或是对电子元件理解不深的工程师而言,去耦电容器是否真的有必要,可能还存在一些疑问。本文将从去耦电容器的功能、作用、必要性以及实际应用等方面进行深入探讨,以期解答这一问题。
始终在原理图的每一页上都包含一个标题栏,这有助于跟踪多个原理图,知道谁设计了它们,并知道你正在查看哪个版本的设计。
在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决LED驱动电源的电磁干扰问题显得尤为重要。本文将从软开关技术、开关频率调制技术和电磁干扰滤波器三个方面,详细探讨解决LED驱动电源电磁干扰的三大硬件措施。
生活中需要一台小功率电源装置,以备在停电或户外旅行等应用场合应急使用。小功率电源(户外电源)架构包括了光伏发电、电池充电管理、USB/Type-C充电接口、逆变单元等部分。
升压型DC/DC转换器的作用是将电池电压提升到所需的电压,而降压型DC/DC转换器则是将电网电压降低到电池所需的电压。升降压型DC/DC转换器则可以根据需要进行升降压转换。
这两种转换器都适用于特定的应用范围。然而,某些应用需要根据特定条件或迎合特定操作场景同时对输入电压进行升压和降压。
一般分立式TVS的结电容都较高,表贴式TVS管中两种类型都有。在高频信号线路的保护中,应主要选用低结电容的TVS管。
作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手、高手、新手,几乎对控制环路的设计一筹莫展,基本上靠实验。
尽管很简单,但这种变换器设计却赋予很多应用巨大的优势。近年来,很多更新、更复杂的拓扑结构不断出现,但反激式变换器设计仍然很流行。