• 陶瓷电容器的替代方案,铝电解电容介绍

    铝电解类型是需要非常大电容值的首选组件。它们在几乎所有绝对尺寸不是首要设计因素的电子设备中无处不在。铝电解类型具有数百伏量级的大额定电压和数千微法量级的巨大电容值。有专门品种的“超级电容器”,其电容值超过整法拉,这些主要用作电池替代品,而不是大容量去耦。

  • 陶瓷电容器的替代方案,固态钽电容介绍

    陶瓷电容器没有固有的磨损机制,高介电 2 类电容器 (X7R) 在使用过程中会由于施加电压和老化而损失超过 85% 的电容,但即便如此,它们也不会发生灾难性的故障。陶瓷电容器非常有用,除非需要大于微法拉区域的值,因此对于体去耦应用,需要其他类型。在这里,我们看看替代方案。

  • 使用变速电机驱动器:是好事还是坏事?

    现在,在许多使用电动机的应用中,该技术需要不同的速度。变速驱动器(VSD)在电机工业应用中的驱动效率方面发挥着重要作用,无论是在设计阶段还是在车间。

  • 电容器在电力电子中的应用,缓冲器、滤波器和EMI

    我们提到一个关键应用是电源转换器或逆变器的直流总线上的电容器,提供“穿越”或“保持”的需求是选择铝电解电容器或薄膜电容器类型的一个差异化因素。举个例子,看看每种类型是如何适合的,也许很有启发性。采用具有功率因数校正前端的 90% 效率、1kW 离线 AC-DC 转换器。其内部直流母线以 400VDC 标称工作,在转换器停止调节之前降至 300VDC。

  • 聚丙烯电容器的结构以及局部放电效应说明

    聚丙烯膜电容器是有感结构,用聚丙烯作为电介质和铝箔为电极绕制而成,导线采用镀锡铜包钢线,使用环氧树脂包封。体积小,重量轻;更好稳定性和可靠性。引线直接点焊于电极,损耗小。广泛用于电视机,收录机,DVD及各种通讯器材电子仪器的直流、脉冲电路中。

  • 电力应用中薄膜电容器和铝电解电容器的特性

    设计电力电子设备的工程师发现,从储能到滤波器和去耦等多种功能都需要电容器。有不同的电容器类型可供选择,乍一看,它们的电容和电压额定值似乎相同,但性能却不尽相同。不正确的选择充其量会导致昂贵的“过度设计”的解决方案,最坏的情况是导致产品不可靠或不安全。

  • 对比功率器件IGBT 真的比 MOSFET 好吗?

    功率半导体是电子装置中电能转换与电路控制的核心,主要用于改变电子装置中电压和频率,及直流交流转换等。只要在拥有电流电压及相位转换的电路系统中,都会用到功率零组件。

  • 在大电流转换器中实现精确和无损的电流检测

    很明显,高效率和小尺寸是 DC/DC 转换器解决方案的关键基准。作为一名系统工程师,我敏锐地意识到更高的效率是减少功率损耗、降低组件温度以及在给定气流和环境温度环境下提供更多可用功率的蓝图。然而,将解决方案压缩成一个小的 PCB 尺寸是另一个挑战。

  • 使用PMBus为我们的 FPGA应用 供电,并减少PCB面积

    最近,我正在研究可用于为 FPGA 供电的不同参考设计和资源。我发现一种设计是为了易于使用而创建的,使用集成电感器模块,一种是使用分立元件而具有成本效益的设计,另一种是使用 PMBus 设备制成的设计,为工程师提供了最大的灵活性来控制和监控每个轨道。尽管所有这些设计各不相同,但一个共同点是电源管理解决方案占用了相当大的电路板空间,其中包括稳压器、LDO、复位 IC、定序器、功率级等。

  • 碳化硅 FET 在 SMPS 应用中大放异彩

    碳化硅 (SiC) FET 开始在 PWM(脉冲宽度调制)和 SMPS(开关模式电源)系统的固有效率已经成为优势的市场中获得关注。这项新技术的一些主要参与者展示了比之前的 IGBT 和传统 MOSFET 设计效率更高的电源系统。在夏威夷这样的地方,电费可能超过 0.35 美元/千瓦时,这一点变得很重要。在欧洲和亚洲也有类似的高电力成本需要处理。对于生活在电网之外的人来说,这也很重要。

  • 使用达林顿继电器驱动器进行设计时降低 EMI 的 4 个步骤

    电磁干扰(EMI)历来是让PCB设计工程师们头疼的一个问题,它威胁着电子设备的安全性、可靠性和稳定性。因此,我们在设计PCB时,需要遵循一定的原则,使电路板的电磁干扰控制在一定的范围内,达到设计要求和标准,提高电路的整体性能。

  • 如何准确测量 GSM 系统中的电流和电压

    在许多无线基站应用中,隔离电源转换器的电源是通过 -48 V 电源提供的。通信基站使用-48V电源很大部分有历史原因,历史上,通信行业设备一直使用-48V直流供电。-48V也就是正极接地。因为最小的通讯网和通信工程都是用的电话网,电信局供电电压都是48V的,后期工程和端口通讯设备为了兼容早期设备,降低更换成本,基本都用的-48V的电源。

  • 如何使用全差分放大器构建 TIA 电路

    跨阻抗放大器(TIA) 最常使用运算放大器(op amps) 构建。而且,越来越多的(如果不是全部的话)模数转换器(ADC) 是全差分系统,需要具有单端差分机制。TIA由于具有高带宽的优点,一般用于高速电路,如光电传输通讯系统中普遍使用。

  • 常见的驱动螺线管的应用技巧

    从表面上看,我们可能认为驱动螺线管或阀门执行器接缝非常简单。老实说,在大多数情况下确实如此。打开或关闭电流并不是很困难。但是,如果我们的应用程序需要非常快速地打开/关闭负载驱动怎么办?实现这一目标的最佳方法是什么?

  • 数字隔离基础:如何使用光耦合器、电感(或磁变压器)和电容

    您是数字隔离世界的新手吗?也许你是一个经验丰富的老手?无论您的专业水平如何,我们都可以每隔这么多时钟周期使用一次刷新。数字隔离主题是一个非常受欢迎的领域,有很多有趣的方面。如果以开放格式保留以供消费,仅基础知识就可能使您头晕目眩。在 TI,我们冒昧地将基础知识以易于理解的格式进行了阐述,并随后在此基础上进行了深入研究,深入探讨了更高级的主题。

发布文章