在当前的全球能源危机中,重点是效率,电子产品正面临着在提供高性能的同时降低功耗的艰巨挑战。由于这场危机,世界各地的各种政府机构已经或正在寻求提高其各自规格中众多产品的效率标准。使用传统的硬开关转换器将难以满足这些效率规范。电源设计人员将需要考虑软开关拓扑以提高效率并允许更高频率的操作。
如果您使用过或查看过电池系统,您很可能听说过电池管理系统或 BMS。那么,如果它们都做同样的事情,为什么 BMS 价格从 10 美元到几千美元不等呢?一个适当的类比是问为什么机动运输系统的价格差异如此之大,在这一范围的一端是机动滑板,另一端是运输卡车。让我们仔细看看这个类比如何在电池管理系统中发挥作用。
使用本设计实例中描述的快速动态负载来测试电力系统的瞬态响应可以揭示许多关键的运行特性。快速电流阶跃导致的电压偏差可以提供对稳压器相位裕度的深入了解。此外,对于距离负载点有一定距离的电源,瞬态测试可以帮助确定有效的串联互连电感、并联电容和 ESR。虽然商业电源的相位裕度通常由供应商验证,但添加远程感应通常会破坏电源的稳定性。互连电感和负载电容会在调节器控制回路反馈中引入额外的相移,从而影响稳定性。
EPAD MOSFET 是一种有源器件,可在大量设计中用作基本电路元件。有许多电路可以利用它们。使用这些 EPAD MOSFET 器件的潜在设计和用途的数量仅受设计人员的需求和想象力的限制。
输出短路保护固定频率折返,折返工作频率高,输出短路保护效果会降低;折返工作频率低,系统甚至进入到非连续工作模式,虽然保护效果好,但有可能导致输出短路消除后输出电压无法恢复正常。如图1所示,输入24V、输出12V的 DCDC变换器,输出短路时,固定折返频率为正常工作频率的1/16,系统进入到非连续工作模式。
为物联网应用选择电子元件的两个关键标准是功率预算和性能。自从电子产品问世以来,就一直在这两者之间进行权衡——要么获得最佳功耗,要么获得最高性能。根据应用程序,系统架构师对系统中的不同组件有不同的要求。例如,系统可能需要高性能控制器但低功耗存储器。一个典型的案例是可穿戴设备,其中控制器需要功能强大,但由于 SRAM 用作暂存器,因此预计它具有尽可能低的功耗。
尽管输出电压随负载的变化在美学上令人不快,但该模型相对于前一个模型的优势是巨大的。它包含相同限制之间的输出电压,具有几乎两倍的 ESR,并且当我们将它们与允许的偏差进行比较时,误差源和纹波电压会变小,这通常是这种情况。将近两倍的 ESR 意味着输出电容器的数量几乎减少了一半,从而大大降低了成本和尺寸。剩下的问题是:我们如何设计电源以具有此特性?
开关电源通常具有严格的静态调节规范。使用广泛可用的精密基准,我们无需任何初始调整即可在工作温度范围内轻松实现 ±1% 的精度。我们还必须处理电源的动态调节规范,制造商通常将其指定为瞬态负载的最大允许偏差,该瞬态负载具有规定的电流阶跃和规定的最大允许压摆率。这些规格以及恢复时间定义了瞬态后输出电压需要多长时间才能恢复到静态限制范围内。
在阈值电压或低于阈值电压时,EPAD MOSFET 在称为亚阈值区域的工作区域中表现出关断特性。这是 EPAD MOSFET 传导通道根据施加的栅极电压快速关闭的区域。由栅电极上的栅电压引起的沟道呈指数下降,因此导致漏极电流呈指数下降。然而,通道不会随着栅极电压的降低而突然关闭,而是以每十倍电流下降约 110 mV 的固定速率下降。
ALD1148xx/ALD1149xx 产品是耗尽型 EPAD MOSFET,当栅极偏置电压为 0.0V 时,它们是常开器件。耗尽模式阈值电压处于 MOSFET 器件关断的负电压。提供负阈值,例如 –0.40V、-1.30V 和 –3.50V。在没有电源电压且 Vgs = 0.0V 的情况下,这些 EPAD MOSFET 器件已经开启,并且在源极和漏极端子之间表现出受控的导通电阻。
寻求在电路设计中实现更低的工作电压和更低的功耗水平是一种趋势,这给电气工程师带来了艰巨的挑战,因为他们遇到了基本半导体器件特性对他们施加的限制。长期以来,工程师们一直将这些特性视为基本特性,并可能阻止他们最大限度地扩大可用电压范围,否则会使新电路取得成功。
所以,我想说这个概念是完全可扩展的。因此,我们可以为低功率制作非常高的 RDS (on) 部件,或为高功率制作非常低的 RDS (on) 部件。通过简单地重塑设计,它可以扩展到低电压,但这个概念是成立的。这就是我们基本上认为我们已经实现了最初目标的方式。
如今,无论生活亦或是工作环境中都充斥着大量不同频率的电磁场,各个电子、电气设备在同一空间中同时工作时,总会在它周围产生一定强度的电磁场,比如电视发射台、固定或移动式无线电发射台以及各种工业辐射源产生的电磁场。
罗德与施瓦茨宣布进入源测量单元 (SMU) 市场,推出两款新仪器,用于分析和优化物联网 (IoT) 应用和半导体元件测试的电池寿命测试。
汽车电气化正在兴起,随着世界各国政府试图实现可持续发展目标,它可能会继续增长。本文摘录了与恩智浦半导体执行副总裁兼高级模拟业务线总经理 Jens Hinrichsen 就汽车电气化的各个方面的对话——从技术方面,包括电池管理,到增长的挑战,包括解决范围焦虑等因素,这是一种常见的消费者犹豫。