电气化使汽车制造商有机会完全重新想象汽车是什么,以及它可以是什么。与德州仪器 (TI) 全球汽车系统总监 Ryan Manack 探讨汽车电气化道路上的新趋势和挑战的对话。
有一部分人认为,使用激光直接照射胶囊并导致内爆的直接驱动是有市场的方法。当然,这是罗切斯特大学 LLE 长期使用的策略,Ditmire 补充说。
未来 30 年的世界能源需求需要大幅增加,现有的可再生技术无法满足。尽管我们还有时间,但研究和开发对于下一次能源革命的成功至关重要。随着可再生能源和储能技术的进一步发展,聚变能源是缩小差距的一种潜在解决方案。
现在在谈论脱碳时考虑全局非常重要,正如欧盟绿色协议中所述,氢是其中的重要组成部分。“如果我们考虑运输部门,排除氢气不是一种选择,”他说。“虽然最大的话题是由电池驱动的电动汽车,但我们确实需要考虑整体范围,包括卡车、公共交通工具和在户外非电气化轨道上运行的火车。所有这些都将受益于氢,并为其他应用腾出电池。”
从智能设备充电器等低功率、低成本应用一直到高功率汽车应用,氮化镓 FET 正成为许多产品的广泛首选。大多数情况下,设计人员对 GaN 提供的更高的效率和功率密度印象深刻,这导致器件具有比硅同类产品更大的功率能力。然而,高端音频放大器现在也越来越多地转向 GaN 技术,因为 GaN FET 的平滑开关特性导致注入放大器的可听噪声更少。
汽车电子系统的进步导致对 EMC 和 EMI 屏蔽设计的要求越来越严格。机械和电气设计接口具有挑战性,特别是对于新产品开发而言,必须做出关键的早期设计决策,或者假设可以通过良好的电子设计来实现 EMC 以消除对 EMI 屏蔽的需求,或者预计包含EMI屏蔽。此外,应优化EMI屏蔽设计,以尽可能低的成本满足EMC要求。这也增加了选择正确的 EMI 屏蔽材料和开发用于 EMI 屏蔽应用的新材料的需求 。
随着技术的进步,在汽车中安装大量电气和电子系统的需求急剧增加。仅举几例,这些系统包括控制区域网络 (CAN)、安全系统、通信、移动媒体、信息娱乐系统,包括无线耳机、直流电机和控制器。由于汽车设计涉及的尺寸和重量限制,这些系统的物理尺寸大大减小。这些系统可能很小,但这并不一定意味着它们的电磁辐射也很小。
电磁干扰 (EMI) 被誉为电源设计中最困难的方面之一。我认为这种声誉在很大程度上来自这样一个事实,即大多数与 EMI 相关的挑战并不是通过查看原理图就能解决的问题。这可能令人沮丧,因为原理图是工程师了解电路功能的中心位置。当然,您知道设计中有一些不在原理图中的相关功能——比如代码。
制造清洁度具有令人难以置信的好处,这对于制作优质电子产品至关重要。今天,很少有行业像电子制造那样对日常生活至关重要。每个人都依赖于笔记本电脑、手机、智能手表、汽车和无数其他设备的供应链。
随着电动汽车 (EV) 变得越来越流行,世界变得更加互联,对无线充电的需求也在增长。事实上,许多业内人士认为,掌握无线电力传输 (WPT) 是更大、更快地采用 EV 的关键之一。为车辆充电的便利性使其成为一种更有吸引力、更方便的选择。但随着行业对电动汽车无线充电的完善,需要牢记安全和性能方面的考虑。
每当一项新技术开始起飞时,都会不可避免地围绕它展开一系列活动——就像今天的无线电力传输 (WPT) 一样。它可以同时令人鼓舞、有趣和有趣。大大小小的公司争相参与新的淘金热。
为了最大限度地减少开关阶段的功耗,必须尽快对栅极电容器进行充电和放电。市场提供了特殊的电路来最小化这个过渡期。如果驱动器可以提供更高的栅极电流,则功率损耗会降低,因为功率瞬态的峰值会更短。一般来说,栅极驱动器执行以下任务:
碳化硅和氮化镓开关器件是所有电源电路中主要使用的元件。尽管它们在运行速度、高电压、处理电流和低功耗等固有特性方面取得了优异的成绩,但设计人员将所有注意力都集中在此类设备上,而常常忘记将自己的精力投入到相关的驱动器上。
凭借其最新创新,意法半导体是全球半导体领导者,为各种电子应用领域的客户提供服务,正在推动个人计算的可持续性。新的 ST-ONE 芯片旨在提高各种完全符合 USB-PD 3.1 标准的 AC-DC 适配器的能效,包括笔记本电脑和智能手机充电器。新的 ST-ONE 适配器有助于减少CO 2排放和塑料消耗量。
CoolSiC MOSFET 1200 V M1H 是英飞凌科技股份公司的一项全新 CoolSiC 技术。复杂的碳化硅 (SiC)芯片将在广泛的产品中实现,包括使用 .XT 互连技术的分立封装和流行的 Easy 模块系列。