GaN HEMT 器件处于创造新机会以及在广泛的功率转换和功率传输应用中取代现有的硅基设计的最前沿。在本文中,我们将回顾一些更广泛使用的 HEMT 的一些关键器件特性,并尝试强调每个方面的一些权衡。
电磁干扰 (EMI) - 由源、路径和受害者组成 - 是电气和电子系统中的一个问题。一些系统会发出噪音,而另一些则容易受到噪音的影响,还有一些系统会发出噪音并受到噪音的影响。然而,可以通过几家值得信赖的供应商轻松获得可用于在几乎任何应用中有效过滤 EMI 的各种组件。
到目前为止,我们已经讨论了满足 EMC 标准所必需的板级 EMI 抑制解决方案。然而,对于封闭系统不能免疫甚至发射 EMI 的应用,它们可能还不够。此类应用(包括医疗、航天、航空航天和其他关键任务系统)需要盒级 EMI 滤波。
电磁干扰 (EMI) 是所有电气和电子电路中的一个问题。这个由六部分组成的系列将讨论用于减轻 EMI 噪声排放的可用组件解决方案;如何使您的电路不易受 EMI 影响;以及针对汽车、医疗、植入式和空间应用的特定 EMI 考虑因素。在第一篇文章中,我将介绍 EMI 以及用于降低 EMI 噪声排放的可用组件解决方案。
在恶劣环境应用中使用的组件通常会承受过大的机械应力、极热或极冷的温度、增加的静电放电潜力和/或高水平的辐射。因此,这些组件采用能够处理高温变化的材料制造,并具有机械坚固的结构。例如,陶瓷 NP0/C0G 等电介质能够处理高达 150 o C 的温度而电容没有变化,但缺乏制造高电容器件所需的高介电常数。由于这一限制,已开发出具有更高常数的电介质,如 X8R,以将典型 X7R 电介质的温度范围扩展到其通常的温度范围之外125 oC 极限。
Amber Solutions 已更名为 Amber Semiconductor (AmberSemi),立即生效。迁移至 AmberSemi 反映了该公司更清楚地展示其关键技术功能的意图,其中包括将其专利的突破性技术产品化,用于将能量的交流直接数字控制转化为硅芯片。这一成就为主要的半导体和电气产品公司 彻底改革全球电网和实现电气产品现代化铺平了道路 。
电源系统设计包括设计参数之间的许多权衡,例如尺寸、成本、效率和负载瞬态性能。为了设计功率级,必须建立各种特性,例如瞬态容限、纹波电压和负载特性。系统设计人员正专注于通过更好地控制电池特性来使用新的电路拓扑来提高电源转换效率,以开发具有更长运行时间和更小的占位面积的系统。低效率对应于增加的功耗,必须充分处理。较低的开关频率会降低开关损耗,但较高的开关频率可提供更高的性能和更快的瞬态响应。西兰娜半导体推出了智能功率共享降压转换器电源IC。具有集成 USB-PD/FC 端口控制器的新型 SZPL3002A 降压转换器 IC 可显着减少执行 65-W 快速充电器和具有多达四个端口的适配器应用所需的组件数量。该电源 IC 采用完全集成的 USB-PD 控制器、MCU 和 VCONN 电缆通信协议,在这款高效 DC/DC 降压转换器中实现智能电源共享。
BJT是所有电子元件之王,它改变了电子技术的进程。晶体管_也可以是一个功率元件,并允许重要的电流值通过。功率 BJT 虽然采用与信号晶体管不同的技术制造,但具有非常相似的工作特性。主要区别在于较高的耐受电压和电流值以及较低的电流增益。为此,需要以相当高的基极电流驱动功率晶体管。
在上一集中观察到的双极晶体管的缺点是开关时间太长,尤其是在高功率时。这样,它们不能保证良好的饱和度,因此开关损耗是不可接受的。由于采用了“场效应”技术,使用称为 Power-mos 或场效应功率晶体管的开关器件,这个问题已大大减少。在任何情况下,表示此类组件的最常用名称是 MOSFET。
基于硅 (Si) 的电力电子产品长期以来一直主导着电力电子行业。由于其重要的优势,碳化硅(SiC)近年来在市场上获得了很大的空间。随着新材料的应用,电子开关的静态和动态电气特性得到了显着改善。
开关、电阻器和MOSFET的并联连接的目的是划分所涉及的功率并创建可以承受更大功率的设备。它们可以并联以增加输出电流的容量。因为它们不受热影响不稳定性,并联连接通常比其他更过时的组件更简单,更不重要。碳化硅MOSFET也可以与其他同类器件并联使用。多个单元之间的简单并联在正常条件下工作良好,但在与温度、电流和工作频率相关的异常事件中,操作条件可能变得至关重要。因此,必须采取一定的预防措施来创建防故障电路,以便它们能够充分利用功率器件并联所提供的优势。
英飞凌科技推出了一款名为 TLE9012AQU 的新电池管理系统,用于管理和平衡电动汽车的电池电量。这家德国芯片公司专门为混合动力和电动汽车电池设计了它,但它也适用于其他应用,如储能系统和电动自行车电池管理系统。
近二十年来,氮化镓 (GaN) 半导体技术已被曝光,预示着射频功率能力的范式转变。尽管所有这些承诺尚未兑现,但 GaN 器件已稳步进入许多射频、微波、毫米波 (mmWave),甚至现在甚至是太赫兹波 (THz) 应用。
汽车电子系统架构发生了颠覆性变化。它已经持续了近十年,现在正在加快速度。这主要发生在 BEV 初创公司中,因为它们没有历史限制或根深蒂固的喜爱设计,并且可以从电子架构的零基础开始。
无线充电可能需要应对标准之争,但无线充电联盟(WPC) 认为还有一个重大的测量问题。因此,WPC 与人合着了一项研究,以发现测量无线充电能效的最佳方法。