汽车解决方案必须满足对电磁能力 (EMC) 的严格要求,这从根本上是一个系统集成问题。随着 ECU 和线束的数量和复杂性的增加,问题只会变得更糟。挑战不是电子产品的增加,而是 OEM 上市时间需要更短的最终产品验证时间。消费电子进步的步伐也使硬件冗余变得更加复杂,并迫使汽车系统更快地迁移以跟上这一步伐。
USB Type-C 标准允许使用标准电缆实现 5V 至 20V 范围内的可调输出电压和高达 3A 的负载电流。由于功率水平高达 60W,反激式仍然是拓扑的不错选择。然而,为初级侧控制器提供偏置电源可能会带来一些挑战。
选择像线性稳压器这样简单的东西通常是热动力学方面的一课。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。
抑制输入滤波器谐振的传统方法是添加另一个电容,其电容至少是原始输入电容的三倍,并与一个串联电阻进行阻尼,增加的电容至少是输入电容的四倍。最佳阻尼发生在电阻值非常接近电感除以原始输入电容的平方根时(见下面的等式 2)。然而,在许多情况下,客户不想投入那么多电容,如果他们确实添加了成本较低的电解电容器,电阻值可能会有很大差异。这些电容器中的大多数都指定了最大串联电阻,但典型部件只有 1/4th到该值的 1/3 rd 。
电感是电导体的特性,它阻止流过它的电流发生变化。它被定义为感应电压与产生感应电压的电流变化率之比,以亨利 (H) 为单位。RF 电感器的电感额定值通常在大约 0.5 纳亨 (nH) 或更低到数百 nH 的范围内。正如下面关于 RF 电感器结构选择的部分所述,电感取决于结构、磁芯尺寸、磁芯材料和线圈匝数。电感器可提供固定或可变电感值。
在电磁干扰(EMI) 强化放大器诞生之前,像我们这样的系统设计师只能实施自己的滤波方案。其中一些方案奏效了,而另一些则没有成功,让我们头疼不已。
因此,假设我们几乎完成了最新最好的MSP430应用程序。所有的错误都已被根除,它的工作就像一个魅力。它几乎准备好进入主舞台,但仍有一件事需要注意:电源。毕竟,我们不能指望每个人都用实验室电源为他们的应用程序供电,对吧?
如果我们正在设计汽车雷达,甚至是商业或军用雷达系统,我们都会受到物理学的约束。我想改变这一点,但我在大学里的许多老教授都说“有些规则可以改变,有些自然法则是不可动摇的”。无线电传输中的路径损耗就是其中之一。因此,如果我们想让雷达看得更远,就需要提高系统的动态范围。
智能电网的目的是允许通过电源进行通信以提高电网的效率。这是通过确保连接到电网的任何设备不仅对预期功能具有高能效,而且将以最有效的方式使用能源,最大限度地减少峰值功耗和平均整体功耗来实现。
只需使用电阻器即可测量电流。 每个人都知道欧姆定律:V=IR。通过测量已知电阻器上的电压,可以确定电流。图 1 显示了一个非常简单的图表,说明了如何测量电源输出中的电流。
大多数传导 EMI 问题是由共模噪声引起的。 此外,大多数共模噪声问题是由电源中的寄生电容引起的。 开关电源本质上具有高 dV/dt 的节点。将寄生电容与高 dV/dt 混合会产生 EMI 问题。当寄生电容的另一端连接到电源的输入端时,少量电流会直接泵入电源线。
霍尔传感器最著名的作用之一是与 BLDC 电机共同作为电子换向器的传感器。
很明显,智能手机和平板电脑时代几乎改变了每个人的生活。然而,电源设计人员可能是唯一注意到这些产品的制造商也彻底改变了 AC/DC 适配器的人。毕竟,没有人愿意将他们的小型智能手机插入一个巨大的电源。
在许多应用中,例如温度传感,需要两个电源电压来为系统中的运算放大器供电——一个正电压和一个负电压。放大器需要这种双电源,以便正确测量非常接近或什至低于地面的信号。如果运算放大器的负电源输入仅接地并使用单个正电源电压,则这些信号将无法正确处理。 对于看到这些用例的放大器来说,负电压和正电压都至关重要。
本文我将稍微改变一下并谈论一个以太网供电 (PoE) 的潜在应用——连接物联网 (IoT)。通常,物联网的描述涉及智能电网应用,其中设备直接连接到配电网络,或具有无线连接的小型电池供电设备。家庭中的物联网设备要么需要比电池提供更多的电力,要么是固定的并且可以使用有线电源,或者两者兼而有之?我认为启用这种类型的物联网的最佳答案是 PoE。