外部电压参考引脚可能允许更高的电压源(与数字电源轨相比)微控制器本身)以获得更宽的模拟输入范围,或更稳定的信号源以获得更高的精度。这有点过于简单化了。因此,电压参考因素如何转化为值得一看的。
数模转换器 (DAC) 将位转换回声音、图像或位置。芯片制造商非常努力地创建可靠和准确的 DAC。尽管如此,有时还是会出现打嗝,在输出波形中产生波纹。非线性误差可能会累加,而其表亲非单调性可能会带来更大的问题。DAC 中点毛刺也可以将相当大的尖峰发射到原本平滑的信号中。
PCIM Europe德国纽伦堡电力电子系统及元器件展,创办于1979年,每年一届,至今已经有30多年的历史。该展是欧洲电力电子及其使用范畴、智能运动和电能质量最具影响力的博览会,也是全球最大的功率半导体展会。PCIM Europe以其高质量的专业观众,成为享誉电力电子行业的专业国际性展会。
在过去的四十年里,由于采用了更好的设计和制造工艺,以及高质量材料的可用性,基于硅技术的功率器件取得了重大进展。然而,大多数商用功率器件现在正在接近硅提供的理论性能极限,特别是在它们阻挡高压的能力、在导通状态下提供低电压降以及它们在非常高的频率下开关的能力方面。
用于通过线圈传输电能的技术分为两类:第一类称为感应耦合,或称磁感应,或称电磁感应,这三个名称指的是同一种技术,在业界简称为 MI。此外,同样通过线圈传输能量的磁共振在业内被称为MR。MI无线充电技术已广泛应用于市面上的手持设备中,但采用MR技术的产品却很少见。
在 MI 技术中,发射端利用驱动器连接电容器和线圈产生谐振并发送电磁能,而接收端线圈通过接收电磁能和连接电容器的谐振效应来接收电能。线圈是缠绕在电感器中的一段导线。成为电感的导线上每个位置的信号都是不同的。最大谐振信号幅值出现在线圈和电容器的结点处,远离结点处逐渐减小。
世界正在朝着电动汽车的方向发展,这涉及通过大规模采用电动汽车来实现整个交通系统的脱碳。随着电动汽车需求的增加,我们必须面对越来越多的汽车对电力基础设施(即电网)造成的后果。大量电动汽车确实会增加充电所需的电力需求,并有可能使电网承受超过其容量的压力。
德国纽伦堡—2022年5月10日-12日,一年一度的PCIM Europe盛大开幕,PCIM Europe即欧洲电力电子系统及元器件展,是电力电子、智能运动、可再生能源和能源管理领域最具影响力的博览会,也是全球最大的功率半导体展会,继连续两年举办线上展会后,于今年终于回归线下。
PCIM 见证了许多公司与氮化镓和碳化硅合作。用于电动汽车的半导体和能源革命——所有这一切都是一个快速发展的生态系统。SiC 和 GaN 器件具有比 Si 高得多的临界击穿电压,允许更薄的漂移层和更高的掺杂浓度。对于给定的芯片面积和额定电压,这会降低导通电阻,从而通过降低功率损耗提供更高的效率。
当前电子应用的趋势,尤其是那些基于大功率设备的应用,是实现越来越小的尺寸和越来越高的组件密度。由于引入了超结器件和宽带隙材料(如氮化镓),迅速实现了更高的开关频率,从而减小了无源器件的体积。
对电源电路的需求相互矛盾:更高功率但更冷;效率更高但体积更小;更快的开关,但更低的噪音。再加上在机械和极端温度下更高的可靠性和更长的使用寿命。在 3 月于休斯顿举行的最新应用电力电子会议 (APEC) 上,ADI 公司 (ADI) 展示了与 µModule 稳压器相关的不同演示,展示了这些解决方案的优势,例如更小尺寸、高效散热以及非常低、高频率电磁干扰(电磁干扰)。
跨阻抗放大器(TIA) 最常使用运算放大器(op amps) 构建。而且,越来越多的(如果不是全部的话)模数转换器(ADC) 是全差分系统,需要具有单端差分机制。对于需要直流耦合的应用,这主要是通过使用全差分放大器(FDA) 来实现的。
可编程逻辑控制器 (PLC) 在工业自动化系统中越来越普遍。在每个可以想象的制造环境中控制各种机器都需要对各种功能进行编程,从移动化工厂混合罐上的阀门到控制生产线上传送带的速度。同一张PLC卡可以用于多个不同的过程;唯一的区别是给定 PLC 单元上的编程指令。
我们在实际做项目中,是否曾经遇到过信号链性能不足的情况,却发现问题出在电源上?在这篇文章中,我将描述信号链中由于电源而遇到的一些问题以及如何解决这些问题。
在过去的几十年里,电源工程师一直在努力完善电源设计艺术。在当今世界,他们正在应对一项新挑战:为数字电源设计设计数字补偿器。许多古老的控制理论和模拟设计过程仍然适用于数字世界,并具有一些额外的特性。例如,当模拟信号被模数转换器离散化时,会引入固有的采样误差(ADC)。