尽管PCB 设计过程令人着迷且具有挑战性,但采取一切必要的预防措施以确保电路正常运行非常重要,尤其是在处理高功率 PCB 时。随着电子设备的尺寸不断缩小,必须充分考虑电源和热管理等设计方面。本文将介绍一些设计人员可以遵循的指南来设计适合支持高功率应用的 PCB。
我们正处于一个被无处不在的数据及高耗电应用所驱动的信息计算世界中,使得电源管理成为了不同系统、网络和软件所面临多方面挑战中的不可忽视的一环。
从历史上看,汽车电子设备一直由用于启动车辆的 12V 铅酸电池供电。即使在发电机运行且电池电缆断开时可能出现高达 42 V 的浪涌,电压仍保持在低于 60 V DC 的安全超低电压 (SELV) 范围内。因此,无需担心 PCB 导电迹线的间距,以避免汽车电路中的电击危险。
电源变压器通常是隔离开关电源转换器中共模噪声的主要来源。为什么?因为在变压器内部,隔离栅初级侧和次级侧的绕组非常接近(通常间隔小于 1 毫米),导致相邻绕组之间存在显着的寄生电容。
在现代电子设备中,反激电源因其结构简单、成本低廉和易于设计等优点而被广泛应用。然而,反激电源在工作过程中会产生大量的电磁干扰(EMI),这不仅会影响设备自身的性能,还可能对周围的电子设备造成干扰,甚至破坏。因此,如何有效抑制反激电源的EMI,成为了电子工程师们亟待解决的重要课题。
随着电子设备对在更小的封装中进行更多处理的需求不断增长,当今任何电源的首要任务都是功率密度。最流行的隔离式电源拓扑是反激式,但传统反激式的漏电和开关损耗限制了开关频率并阻碍了实现小解决方案尺寸的能力。幸运的是,有新的方法可以优化反激式拓扑,以产生更高的效率,即使以更高的频率进行开关也是如此。
在电源转换器中,输入电容器通过感应电缆馈送到电源。首次插入系统时,寄生电感会导致输入电压的振铃几乎达到其直流值的两倍(也称为热插拔)。电源转换器输入阻尼不足和缺乏浪涌控制可能会损坏转换器。
在现代电子与电力系统中,超级电容作为一种高性能的储能元件,因其高功率密度、长循环寿命和快速充放电能力而备受青睐。特别是在需要快速响应和高能量脉冲的应用中,如航空电子设备、电动汽车辅助系统以及瞬时功率补偿等领域,超级电容的作用尤为突出。然而,如何可靠稳定地控制机上电源直接给超级电容充电,是一个需要细致考量的问题。
在电子系统设计中,电源管理是关键的一环,它直接关系到系统的性能、稳定性和效率。其中,降压(Buck)与升压(Boost)模式是电源管理中的两种基本转换模式,广泛应用于各种电子设备中。
随着现代工业和汽车系统的快速发展,对电源管理的要求日益严格。陶瓷电容器,尤其是多层陶瓷电容器(MLCC),在电源管理中发挥着至关重要的作用。然而,随着汽车、工业、数据中心和电信行业对电源需求的不断增加,陶瓷电容器的价格在过去几年中急剧上涨。
在电子工程中,正负电源是基础且关键的概念,它们在许多电子设备中发挥着至关重要的作用。同时,双向可控硅(Triac)作为一种常用的电力电子器件,其触发条件与电源的设计密切相关。
正弦脉宽调制(Sine Pulse Width Modulation,简称SPWM)是一种广泛应用于电力电子设备中的调制方法,特别是在交流电压调制器、逆变器和变频器等领域。SPWM通过将参考波形(通常为正弦波)与载波(在此情况下为三角波或锯齿波)进行比较,产生高低电平的脉宽调制信号,从而实现对输出波形的精确控制。
在现代照明技术中,功率因数校正(Power Factor Correction,简称PFC)已成为不可或缺的一环。随着节能意识的提升和照明技术的不断进步,PFC在照明电路中的应用愈发广泛,其重要性也日益凸显。
在电力系统中,功率因数校正(Power Factor Correction,简称PFC)是一项至关重要的技术,用于改善电流与电压之间的相位差,从而提高电力系统的效率。其中,主动式PFC和被动式PFC是两种主要的实现方式。
在电力电子领域,绝缘栅双极型晶体管(IGBT)作为高性能开关器件,广泛应用于PWM(脉宽调制)方式工作的开关电源中。IGBT的损耗直接影响开关电源的效率、热设计及可靠性。因此,深入分析IGBT在PWM方式下的损耗特性,对于优化开关电源设计具有重要意义。