卷积神经网络

我要报错
  • 理解卷积神经网络

    神经网络是一种系统,或者说是神经元的结构,它使人工智能能够更好地理解数据,从而解决复杂的问题。虽然网络类型多种多样,但本系列文章将仅关注卷积神经网络 (CNN)。CNN 的主要应用领域是模式识别和对输入数据中包含的对象进行分类。CNN 是一种用于深度学习的人工神经网络。这种网络由一个输入层、几个卷积层和一个输出层组成。卷积层是最重要的组件,因为它们使用一组独特的权重和过滤器,使网络能够从输入数据中提取特征。数据可以有多种不同的形式,例如图像、音频和文本。这种特征提取过程使 CNN 能够识别数据中的模式。通过从数据中提取特征,CNN 使工程师能够创建更有效、更高效的应用程序。为了更好地理解 CNN,我们将首先讨论经典的线性规划。

  • 对卷积神经网络进行训练

    本文重点介绍卷积神经网络 (CNN) 的特性和应用,主要用于模式识别和对象分类。在之前文章中,我们展示了微控制器中经典线性程序执行与 CNN 的区别及其优势。我们讨论了 CIFAR 网络,利用该网络可以对图像中的猫、房屋或自行车等对象进行分类,或执行简单的语音模式识别。本文解释了如何训练这些神经网络来解决问题。

  • MAX78000卷积神经网络的硬件转换

    AI应用程序需要大量的能源消耗,通常是以服务器储存所或昂贵的现场可编程门阵列的形式出现。挑战在于提高计算能力,同时保持低能耗和低成本。现在,人工智能的应用正在看到强大的智能边缘计算带来的巨大变化。与传统的基于硬件的计算方法相比,基于硬件的卷积神经网络加速度正以其令人印象深刻的速度和功率,为计算性能开创一个新的时代。通过使传感器节点能够自己做出决定,智能边缘技术极大地降低了5G和Wi-Fi网络的数据传输速率。这正在为以前不可能的新兴技术和独特应用提供动力。例如,偏远地区的烟雾/火灾探测器或传感器层面的环境数据分析都已成为现实--所有这些都随着电池的使用年限而发生变化。为了检验这些功能是如何实现的,本文探索了一个CNN的硬件转换,一个专用的人工智能微控制器。

  • 卷积神经网络的硬件转换:什么是机器学习?——第三部分

    本系列文章由三部分组成,主要探讨卷积神经网络(CNN)的特性和应用。CNN主要用于模式识别和对象分类。作为系列文章的第三部分,本文重点解释如何使用硬件转换卷积神经网络(CNN),并特别介绍使用带CNN硬件加速器的人工智能(AI)微控制器在物联网(IoT)边缘实现人工智能应用所带来的好处。系列文章的前两篇文章为《卷积神经网络简介:什么是机器学习?——第一部分》和《训练卷积神经网络:什么是机器学习?——第二部分》。

  • 训练卷积神经网络:什么是机器学习?——第二部分

    本文是系列文章的第二部分,重点介绍卷积神经网络(CNN)的特性和应用。CNN主要用于模式识别和对象分类。在第一部分文章《卷积神经网络简介:什么是机器学习?——第一部分》中,我们比较了在微控制器中运行经典线性规划程序与运行CNN的区别,并展示了CNN的优势。我们还探讨了CIFAR网络,该网络可以对图像中的猫、房子或自行车等对象进行分类,还可以执行简单的语音识别。本文重点解释如何训练这些神经网络以解决实际问题。

  • 卷积神经网络简介:什么是机器学习?——第一部分

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本系列文章基于此解释了卷积神经网络(CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提取特征的强大工具,例如识别音频信号或图像信号中的复杂模式就是其应用之一。本文讨论了CNN相对于经典线性规划的优势,后续文章《训练卷积神经网络:什么是机器学习?——第二部分》将讨论如何训练CNN模型,系列文章的第三部分将讨论一个特定用例,并使用专门的AI微控制器对模型进行测试。

  • 简述卷积神经网络发展进程

    卷积神经网络的发展,最早可以追溯到1962年,Hubel和Wiesel对猫大脑中的视觉系统的研究。1980年,一个日本科学家福岛邦彦(Kunihiko Fukushima)提出了一个包含卷积层、池化层的神经网络结构。在这个基础上,Yann Lecun将BP算法应用到这个神经网络结构的训练上,就形成了当代卷积神经网络的雏形。

  • 基于 Leap Motion 和卷积神经网络的手势识别

    摘 要 :针对传统神经网络需要人工对参数进行提取的问题,提出基于 Leap Motion 结合卷积神经网络的手势识别方法。首先利用 Leap Motion 获取高精度手势图像,然后对图像进行灰度处理,采用卷积神经网络算法自动对原始图像进行特征提取及分类,最后设计 6 层卷积神经网络用于手势识别。实验结果表明,卷积神经网络算法在6 种手势测试集上的准确率可达 96.5%,且识别时间短,模型具有较好的鲁棒性。

  • 基于深度学习人脸识别技术在高校学堂分析设计及实现

    摘 要 :现代人脸识别以深度学习技术为核心,以卷积神经网络为基础,通过输入图像提取到人脸的特征值计算分析人脸的表情。通过分析当前学生的专注度(表情变化),建立数据采集样本集,通过训练计算完成课堂专注度分析,形成课堂学生专注度分布结果。结果表明,进行教师的课堂学情分析,有利于进行课程的教育教学改革, 提高办学水平,也有利于教育行业的技术进步,提高行业的信息技术教育水平。

  • 基于深度学习的手势识别算法设计

    摘 要 :手势识别是人工智能范畴的一项生物识别技术,其方便、快捷、可靠和稳定等一系列特性使其在多个领域具有广泛应用。如拍照和视频中使用手势增加贴纸和实时特效,将复杂的手语转化为自然语言,智能家居的辅助控制,辅助驾驶系统等。神经网络被广泛应用于图像识别领域,具有较好的口碑。文章基于深度学习理论设计一种识别精度高,能够实现实时手势识别的算法。

  • 使用卷积神经网络预防疲劳驾驶事故

    作者|小白来源|小白学视觉疲劳驾驶:一个严重的问题美国国家公路交通安全管理局估计,每年有91,000起车祸涉及疲劳驾驶的司机,造成约50,000人受伤和近800人死亡。此外,每24名成年司机中就有1人报告在过去30天内在驾驶时睡着了。研究甚至发现,超过20个小时不睡觉相当于血液酒...

  • 基于机器学习的样本多样性算法研究

    摘 要:当前,采用卷积神经网络进行图像目标检测和识别是一大研究热点,并取得了不少研究成果。这些成果在研究过程中使用大量有标签的训练样本作为训练集起了至关重要的作用。文章以人脸识别为例,阐述了多样本获取现状;讨论了基于传统方法的多样本算法研究现状和基于深度学习的多样本算法研究现状;最后展望了多样本算法未来的发展方向。

  • 基于卷积神经网络的实景交通标志识别

    摘 要:文中对传统的卷积神经网络Lenet-5的结构进行了改进,并利用拍摄的实景交通标志图对其进行训练。训练集含有10万张图片,训练大约消耗了一天时间,尽管如此,当网络训练好之后,识别一张交通标志图可以在1毫秒内完成。非训练集的2万张图片被用作测试集来验证已训练好的网络,最终识别率可达80%以上。

  • 看了这7篇论文,你会完全掌握卷积神经网络!

    目前,作为深度学习的代表算法之一,卷积神经网络(Convolutional Neural Networks,CNN)在计算机视觉、分类等领域上,都取得了当前最好的效果。

  • 什么是卷积神经网络?基本结构是什么?有哪些应用领域?

    20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络CNN(ConvoluTI

  • 卷积神经网络判读与分类视网膜眼底成像技术再获突破

    在人工智能(AI)深度学习的领域中,卷积神经网络(ConvoluTIonal Neural Network;CNN)已是目前最具代表性的发展技术之一;然而不论是CNN模型或临床医师,在针对视网膜

  • 基于无人机的视觉传感网和图像识别中心的建设

    无人机技术的发展十分迅速。从美军无人机的使用,到现在无人机在研究、民用等多方面的普及,无人机已成为一种新的潮流[1-2]。随之而来也带来很多新问题,此前无人机险撞战机事件的发生,就给人们敲响了警

  • 五分钟了解卷积神经网络

    卷积神经网络 经网络结构图 图2 卷积神经网络结构图 卷积神经网络和全连接的神经网络结构上的差异还是比较大的,全连接的网络,相邻两层的节点都有边相连,

  • 谷歌借助深度学习技术,揭开微妙的生物学现象

    人们常说眼睛是心灵的窗户,但是谷歌的研究人员把它们视作人们健康的指示器。谷歌正借助深度学习技术,通过分析人们的视网膜图像预测一个人的血压、年龄和吸烟状态。谷歌的计算机能够从血管的排布中获取线索,

  • 深度学习:卷积神经网络在每一层提取到的特征以及训练的过程

    前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的。我们知道,神经网络本身包含了一系

首页  上一页  1 2 下一页 尾页