址方式物理地址的计算方法如下:寄存器间接寻址方式读取存储单元的原理如图所示。在不使用段超越前缀的情况下,有下列规定:若有效地址用SI、DI和BX等之一来指定,则其缺省的段寄存器为DS;若有效地址用BP来指定,则
在ARM处理器内部共有37个用户可访问的寄存器,分别为31个通用的32位寄存器和6个状态寄存器。一.通用寄存器:1.在汇编语言中,寄存器R0-R13为保存数据或地址值的通用寄存器。2.其中寄存器R0-R7为未分组
SCON寄存器的位格式如下:TI:串行口内部发送中断请求标志位。当串行口发送完一个字符后,由内部硬件使发送中断标志TI置位。产生中断请求标志。RI:串行口内部接收中断请求标志位。当串行口接收到一个字符后,由内部
STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSRR和GPIOx_BRR寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置'1'或置'0'。 GPIOx_BSRR的高16位中每一位对应端口x的每个位,对高16位中的某
标准的 51 单片机内部有 T0 和 T1 这两个定时器,T 就是 Timer 的缩写,现在很多 51 系列单片机还会增加额外的定时器,在这里我们先讲定时器 0 和 1。前边提到过,对于单片机的每一个功能模块,都是由它的 SFR,也就
芯片架构简图芯片(这里指内核,或者叫 CPU)和外设之间通过各种总线连接,其中驱动单元有 4个,被动单元也有 4 个。为了方便理解,我们都可以把驱动单元理解成是CPU 部分,被动单元都理解成外设。系统框图1、ICode总
特殊功能寄存器TCON的高4位为定时器的运行控制位和溢出标志位,低4位为外部中断的触发方式控制位和锁存外部中断请求源。TCON格式如下:D7 D6 D5 D4 D3 D2 D1 D0TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 1.
存储器共有13个寄存器,BANK0~BANK5只需要设置BWSCON和BANKCONx(x为0~5)两个寄存器;BANK6、BANK7外接SDRAM时,除了BWSCON和BANKCONx(x为6、7)外,还要设置REFRESH、BANKSIZE、MRSRB6、MRSRB7等4个寄存器。下
指令寄存器用来保存当前正在执行的一个指令。 当执行一条指令时,先把它内存取出,然后再传送到指令寄存器。 指令分为操作码和操作数,由二进制数字组成。当执行任何给定的指令,必须对操作码
与非网(EEFOCUS)电子产业社区平台为中国电子行业首家采用强大技术平台,由专业的电子技术编辑服务,为全球3000家知名半导体厂家及电子技术系统厂商提供技术信息发布、厂商网站、技术社区建设服务,并以电子术语词典,集成电路数据手册查询,电子产品新闻访谈资讯信息以及互动技术交流社区为上百万电子技术工程师以及高校师生提供最完整的电子技术信息查询和交流服务。
如果在中断服务函数ISR中使用寄存器,那么必须处理好using的使用问题:1、中断服务函数使用using指定与主函数不同的寄存器组(主函数一般使用Register bank 0)。2、中断优先级相同的ISR可用using指定相
1. Warning 280:’i’:unreferencedLOCal variable说明局部变量i 在函数中未作任何的存取操作,解决方法消除函数中i 变量的宣告2 Warning 206:’MusIC3’:missing function-prototype说明Music3( )函数未
一个定义为volatile的变量是说这变量可能会被意想不到地改变,这样,编译器就不会去假设这个变量的值了。精确地说就是,优化器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在寄存器里的备份。
这个例子主要还是熟悉有关定时器A的寄存器配置以及IAR的配置方式。/***********************************************程序功能:实现流水灯以三种流动方式和四种流动速度的不同组合而进行点亮"流动"---
首先简单介绍一下CAN总线,关于CAN总线是谁发明的,CAN总线的历史,CAN总线的发展,CAN总线的应用场合,这些,通通不说。这里只是以我个人理解,简单说说CAN通信。CAN总线的端点没有地址(除非自己在帧
问题:单片机8051中的一些寄存器到底算CPU的还是RAM的?请高手指点,像累加器DPTR,A,PSW等一些寄存器是属于CPU的,但书上又说他们都属于RAM中的特殊功能寄存器(SFR),这是什么道理?另外,存储器和
本文转自https://www.amobbs.com/thread-5462507-1-3.html 第23楼尊重原作不做任何修改=============以下正文===============本来只是路过,写详细一点。我看楼主浮躁得不得了。现在什么都不要做了,先
ARM内核采用精简指令集结构(RISC,Reduced Instruction Set Computer)体系结构。RISC技术产生于上世纪70年代。其目标是设计出一套能在高时钟频率下单周期执行、简单而有效的指令集,RISC的设计重点在于降低硬件执行指令的复杂度,这是因为软件比硬件容易提供更大的灵活性和更高的智能。
ARM系统完成I/O功能的标准方法是使用存储器映射I/O。这种方法使用特定的存储器地址。当从这些地址加载或向这些地址存储时,它们提供I/O功能。某些ARM系统也可能有直接存储器访问(DMA,Direct Memory Access)硬件。
随着物联网技术的不断发展,嵌入式科技得到更为广泛的应用,其中FPGA和嵌入式操作系统的组合前景良好,它们的应用极大的改变了嵌入式开发的效率。为使得Nios II软核和RTEMS嵌入式系统相结合,首先介绍了Nios II的软件开发环境,然后详细阐述如何在Nios II平台下搭建RTEMS嵌入式开发环境。