在数字通信系统中,总线是连接多个设备以实现数据交换的关键组成部分。总线在空闲状态下的行为,即无数据传输时的电气状态,对于系统的稳定性和可靠性至关重要。处理空闲总线条件的方法有多种,其中偏置电阻和总线终端器是两种最为常见且有效的方法。
TDK株式会社(东京证券交易所代码:6762)推出带标准端子 (B58043I9563M052) 和软端子 (B58043E9563M052) 的两款新的900V型元件,扩展了其EIA 2220封装尺寸的B58043系列CeraLink电容器。随着搭载800V电池电压的电动汽车越来越流行,新元件凭借正好适应该电压的工作规格越来越受到追捧。现有的500V CeraLink系列面向配备氮化镓 (GaN) 晶体管或硅MOSFET的400V逆变器,而新的900V型元件的耐电压性能达到1kV以上,非常适合配备碳化硅 (SiC) MOSFET或硅IGBT的800V逆变器。
随着嵌入式系统和物联网技术的飞速发展,微控制器与外设之间的通信变得愈发重要。在众多的通信协议中,SPI(Serial Peripheral Interface,串行外设接口)以其高速、全双工、同步的特性,成为了众多开发者的首选。TTGO显示板作为一款高性能的智能显示屏开发板,集成了HSPI(High-Speed SPI)总线,为开发者提供了强大的数据交互能力。本文将详细介绍如何在TTGO显示板上使用HSPI总线,帮助开发者更好地利用这一功能。
在现代汽车电子系统中,CAN(Controller Area Network)总线技术因其高可靠性、高速率及灵活性而得到广泛应用。CAN总线采用差分信号传输方式,确保信号在传输过程中的抗干扰能力。然而,在某些特殊应用场合,如实验室测试或定制设备中,可能需要一个简单且可调的CAN电平差分输出信号源。旨在介绍如何采用简单电路实现可调CAN电平差分输出信号,以满足这些特殊需求。
在这篇文章中,小编将对USB接口的相关内容和情况加以介绍以帮助大家增进对USB接口的了解程度,和小编一起来阅读以下内容吧。
今天,小编将在这篇文章中为大家带来嵌入式总线技术的有关报道,通过阅读这篇文章,大家可以对嵌入式总线技术具备清晰的认识,主要内容如下。
汽车CAN/LIN总线系统测试的关键是测试流程、测试标准和测试工具,掌握专业的总线分析和测试工具的使用技术,开发测试软件并将它们应用到测试过程是对中国汽车厂家和汽车工程师的重大挑战汽车总线测试流程。概括的讲,汽车总线的测试流程主要包括四个阶段:
现代电子技术的正处于一个飞速发展的时代,随着现代汽车整体性能的逐渐完善,单片机和集成电路不再是家电等电器产品的专属,也正愈来愈广泛的被在应用现代汽车上,电子控制单元部件及各种传感器数量在现代汽车的装配也越来越多。为方便这些电子兀件的信息通讯,汽车局域网络的概念就应运而生了。总线应用技术的研发对我国汽车工业发展意义非常重大。因为我国的汽车总线技术处于相对处于比较落后的阶段,釆用汽车总线设计的汽车还没有达到普及的状态。
现在CAN的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面,现场总线是当今自动化领域技术发展的热点之一、被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。
CAN(Controller Area Network)是一种多主方式的串行通讯总线。基本设计规范要求有高的位速率、高抗电磁干扰性,而且能够检测出产生的任何错误,当信号传输距离达到 10Km 时 CAN-bus 仍可提供高达 5Kbps 的数据传输速率。CAN 模块的设计,是基于 CAN 芯片,对串行信号(RX/TX)与 CAN 差分信号(CANH/CANL)进行互相转换。以下是两种较为常用的 CAN 收发器。
CAN(Controller Area Network)即控制器局域网络。是应用在现场、在微机化测量设备之间实现双向串行多节点数字通讯系统,是一种开放式、数字化、多点通信的底层控制网络。 CAN协议建立在ISO/OSI模型之上,其模型结构有三层。协议分为Can2.0A, CAN2.0B,CANopen几种。
当前市场行业发展CAN总线虽然有强大的抗干扰和纠错重发机制,但目前CAN大量地运用于电动汽车、充电桩、电力电子、轨道交通等电磁环境比较恶劣的场合,因此对CAN总线的抗干扰能力也会存在挑战,所以对CAN总线的抗干扰能力需要加以重视。当CAN总线出现故障或数据传输异常时,往往会出现多种奇怪的故障现象,干扰也会导致帧错误增加,重发频繁,正确数据不能及时到达,将会大大影响工作的效率和质量。想要确定CAN总线故障在哪里,然后更有目标性的去解决它。
CAN总线控制器实现网络协议ISO 11898–1的所有低级功能,同时收发器与物理层通信。不同的物理层需要不同的收发器,如高速can、低速容错can、高速可变数据速率can。在一个典型的实现中,CAN总线控制器和微处理器被统一成一个启用CAN的微控制器。市面上有带SPI接口的外部CAN总线控制器,主要由微芯片制造,但它们往往会增加不必要的成本和复杂性。
CAN英文全称为(Controller Area Network)即局域网控制器,CAN能够实现分布式实时控制。能够将多种智能机器进行网络连接,并进行统一控制。CAN最初由罗伯特·博世公司所开发,1993年开始被广泛应用在各种车辆与电子设备上。CAN能提供安全、有效、即时控制,能使网络消息的传输速度快,效率高,并且能提供多个端口统一控制或多主控制等多种功能。CAN总线的物理层是将ECU(Electronic Control Unit-电子控制单元,又称“行车电脑”、“车载电脑”等)连接至总线的驱动电路。ECU的总数将受限于总线上的电气负荷。物理层定义了物理数据在总线上各节点间的传输过程,主要是连接介质、线路电气特性、数据的编码/解码、位定时和同步的实施标准。理论上,CAN总线上的节点数几乎不受限制,可达到2000个,实际上受电气特性的限制,最多只能接100多个节点。
CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。
工业4.0时代已经到来,基于自主优先级仲裁和错误重发机制的CAN总线应用十分广泛,相同的各种总线故障和问题也十分困扰工程师,其实最好的解决办法就是产品前期设计要相对的严谨,今天主要带大家熟悉CAN总线的常用接口和布线规范。随着CAN总线技术的应用愈发广泛,不仅涉及汽车电子和轨道交通,还包括医疗器械、工业控制、智能家居和机器人网络互联等,当然我们的工程师也被各种奇葩的总线问题困扰,与其后期解决问题,不如前期有效规避。
CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在 当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控 制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大 量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后, CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设 备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。 它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 CAN 控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居 其一。发送方通过使总线电平发生变化,将消息发送给接收方。
CAN总线,国际上应用最广泛的现场总线之一,它的出现简直可以说是一种黑科技,CAN(ControllerAreaNetwork),即控制器局域网络,一般称为CANbus,CAN总线。是由德国BOSCH(博世)公司开发的,现已变成ISO世界标准化的串行通信协议,是现在在世界上使用最广泛的开放式现场总线之一。CAN总线以报文的方法发送数据,每组报文的前十一位为标识符(在同一个体系中,标识符是仅有的),不包括详细发送数据,是对报文优先级的界说,我们将报文的这种格局称为面向内容的编址计划。
总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束, 按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。
CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行半双工通信网络。简单的说就是一种串行通信方式,总线上的每台设备都可以是主机。CAN通信需要CAN控制器和CAN收发器的硬件支持,有的MCU集成CAN控制器。