当用户在命令行下工作时,不是直接同操作系统内核交互信息的,而是由命令解释器接受命令,分析后再传给相关的程序。shell是一种Linux中的命令行解释程序,就如同command.com是DOS下的命令解释程序一样,为用户提供使用操作系统的接口。它们之间的关系如图2.1所示。用户在提示符下输入的命令都由shell先解释然后传给Linux内核。
在了解了Linux的常见命令之后,下面详细讲解Linux的启动过程。Linux的启动过程包含了Linux工作原理的精髓,而且在嵌入式开发过程中非常需要这方面的知识。
init进程的作用是启动Linux系统服务(也就是运行在后台的守护进程)。Linux的系统服务包括两种,第一种是独立运行的系统服务,它们常驻内存中,自开机后一直运行着(如httpd),具有很快的响应速度;第二种是由xinet设定的服务。
在Linux下安装一个完整的软件(嵌入式Linux的必备工具——交叉编译工具),掌握Linux常见命令,学会设置环境变量,同时搭建起嵌入式Linux的交叉编译环境(关于交叉编译的具体概念在本书后面会详细讲解),为今后的实验打下良好的基础。
C语言最早是由贝尔实验室的Dennis Ritchie为了UNIX的辅助开发而编写的,它是在B语言的基础上开发出来的。尽管C语言不是专门针对UNIX操作系统或机器编写的,但它与UNIX系统的关系十分紧密。由于它的硬件无关性和可移植性,使C语言逐渐成为世界上使用最广泛的计算机语言。
读者通过亲自动手安装Linux操作系统,对Linux有个初步的认识,并且加深对Linux中的基本概念的理解,熟悉Linux文件系统目录结构。
调试是所有程序员都会面临的问题。如何提高程序员的调试效率,更好、更快地定位程序中的问题从而加快程序开发的进度,是大家都很关注的问题。就如读者熟知的Windows下的一些调试工具,如Visual Studio自带的设置断点、单步跟踪等,都受到了广大用户的赞赏。
在上一小节,读者已经了解到了make项目管理器的强大功能。的确,makefile可以帮助make完成它的使命,但要承认的是,编写makefile确实不是一件轻松的事,尤其对于一个较大的项目而言更是如此。那么,有没有一种轻松的手段生成makefile而同时又能让用户享受make的优越性呢?
本章是Linux中进行C语言编程的基础,首先讲解了C语言编程的关键点,这里关键要了解编辑器、编译链接器、调试器及项目管理工具等概念。
串口是计算机一种常用的接口,常用的串口有RS-232-C接口。它是于1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通信的标准,它的全称是“数据终端设备(DTE)和数据通信设备(DCE)之间串行二进制数据交换接口技术标准”。
本章前面几节所述的文件及I/O读写都是基于文件描述符的。这些都是基本的I/O控制,是不带缓存的。而本节所要讨论的I/O操作都是基于流缓冲的,它是符合ANSI C的标准I/O处理,这里有很多函数读者已经非常熟悉了(如printf()、scantf()函数等),因此本节中仅简要介绍最主要的函数。
本书在第2章中介绍“ps”的命令时提到过管道,当时指出了管道是Linux中一种很重要的通信方式,它是把一个程序的输出直接连接到另一个程序的输入,这里仍以第2章中的“ps –ef | grep ntp”为例,描述管道的通信过程,如图8.2所示
本章首先讲解了系统调用(System Call)、用户函数接口(API)和系统命令之间的联系和区别,这也是贯穿本书的一条主线,本书就是按照系统命令、用户函数接口(API)系统调用的顺序逐层深入讲解,希望读者能有一个较为深刻的认识。
进程的概念首先是在20世纪60年代初期由MIT的Multics系统和IBM的TSS/360系统引入的。在40多年的发展中,人们对进程有过各种各样的定义。现列举较为著名的几种。
在Linux中创建一个新进程的惟一方法是使用fork()函数。fork()函数是Linux中一个非常重要的函数,和读者以往遇到的函数有一些区别,因为它看起来执行一次却返回两个值。难道一个函数真的能返回两个值吗?希望读者能认真地学习这一部分的内容。
通过编写多进程程序,使读者熟练掌握fork()、exec()、wait()和waitpid()等函数的使用,进一步理解在Linux中多进程编程的步骤。
本章主要介绍进程的控制开发,首先给出了进程的基本概念,Linux下进程的基本结构、模式与类型以及Linux进程管理。进程是Linux中程序运行和资源管理的最小单位,对进程的处理也是嵌入式Linux应用编程的基础,因此,读者一定要牢牢掌握。
信号是UNIX中所使用的进程通信的一种最古老的方法。它是在软件层次上对中断机制的一种模拟,是一种异步通信方式。信号可以直接进行用户空间进程和内核进程之间的交互,内核进程也可以利用它来通知用户空间进程发生了哪些系统事件。它可以在任何时候发给某一进程,而无需知道该进程的状态。
在多任务操作系统环境下,多个进程会同时运行,并且一些进程之间可能存在一定的关联。多个进程可能为了完成同一个任务会相互协作,这样形成进程之间的同步关系。而且在不同进程之间,为了争夺有限的系统资源(硬件或软件资源)会进入竞争状态,这就是进程之间的互斥关系。
可以说,共享内存是一种最为高效的进程间通信方式。因为进程可以直接读写内存,不需要任何数据的复制。为了在多个进程间交换信息,内核专门留出了一块内存区。这段内存区可以由需要访问的进程将其映射到自己的私有地址空间。因此,进程就可以直接读写这一内存区而不需要进行数据的复制,从而大大提高了效率。