随着微电子技术的发展,单片机计算机随之出现,采用单片机设计的新仪器可以大量存储测量信息并 能对测量结果进行实时分析、综合和作出各种判断,即具有智能,被称为智能仪器。
1、引言 随着智能仪器及控制系统对实时性信号处理的要求不断提高和大规模集成电路技术的迅速发展。越来越迫切的要求有一种高性能的设计方案与之相适应,将DSP技术和ARM技术结合起来应用于嵌入
研究开发了嵌入式智能仪器的触摸屏接口; 分析了电阻式触摸屏的工作原理; 设计了触摸屏与微处理器的接口电路; 开发了嵌入式L inux框架下的触摸屏设备驱动程序; 阐述了采
随着智能仪器及控制系统对实时性信号处理的要求不断提高和大规模集成电路技术的迅速发展。越来越迫切的要求有一种高性能的设计方案与之相适
随着智能仪器及控制系统对实时性信号处理的要求不断提高和大规模集成电路技术的迅速发展。越来越迫切的要求有一种高性能的设计方案与之相适应,将DSP技术和ARM技术结合起来应用于嵌入式系统中。
1 引 言ATmega 162是ATMEL公司推出的一款基于AVRRISC的低功耗CMOS的8位单片机。ATmega 162通过在一个时钟周期内执行一条指令,可以达到接近1 MIPS/MHz的性能,从而使得设汁人员可以在功耗和执行速度之间取得平衡。
智能仪器仪表的发展概况80年代,微处理器被用到仪器中,仪器前面板开始朝键盘化方向发展,测量系统常通过ieee488总线连接。不同于传统独立仪器模式的个人仪器得到了发展等。90年代,仪器仪表的智能化突出表现在以下几
0 引言在现代化生产中,为了确保机械设备安全可靠地运行,通常要采用适宜的仪器仪表,利用故障诊断技术及时发现故障,并采取合理的维修或保护措施来排除故障,预防和避免事故的发生。基于对仪器尺寸、便携性和操作方
摘 要: 由点阵式液晶显示器和旋转式光电编码开关构成的智能仪器的人机交互界面,使仪器的操作向菜单式、傻瓜型迈进。在阐述光电编码开关基本原理和使用方法的基础上,介绍了I2C 接口芯片电路形成的硬件输入结构,该
摘要: 研究开发了嵌入式智能仪器的触摸屏接口; 分析了电阻式触摸屏的工作原理; 设计了触摸屏与微处理器的接口电路; 开发了嵌入式L inux框架下的触摸屏设备驱动程序; 阐述了采用触摸屏作为输入的MiniGU I应用程序的编
1 引 言ATmega 162是ATMEL公司推出的一款基于AVRRISC的低功耗CMOS的8位单片机。ATmega 162通过在一个时钟周期内执行一条指令,可以达到接近1 MIPS/MHz的性能,从而使得设汁人员可以在功耗和执行速度之间取得平衡。A
摘 要: 由点阵式液晶显示器和旋转式光电编码开关构成的智能仪器的人机交互界面,使仪器的操作向菜单式、傻瓜型迈进。在阐述光电编码开关基本原理和使用方法的基础上,介绍了I2C 接口芯片电路形成的硬件输入结构,该
摘要: 研究开发了嵌入式智能仪器的触摸屏接口; 分析了电阻式触摸屏的工作原理; 设计了触摸屏与微处理器的接口电路; 开发了嵌入式L inux框架下的触摸屏设备驱动程序; 阐述了采用触摸屏作为输入的MiniGU I应用程序
基于嵌入式技术的智能仪器触摸屏接口设计
在备用电源供电的情况下,如果交流电220V又重新恢复,则K断开,DCAC=1,“交流”指示灯亮,“电池”指示灯灭,不发出报警声,ALARM=0。另外,在仪器工作的同时,备用电源是否充电由CHARGE来控制
引言:许多仪器的前面板通常是由诸多的旋钮、按键组成的混合界面。传统的仪器前面板上通常有两种旋钮,一种是电位器,用于调节连续变化的量;另一种是档位开关,用于调节间隔变化的量。它们嵌入在测量电路中,可以直
引言 传统测试系统由于专用性强、相互不兼容、扩展性差、缺乏通用化、模块化,不能共享 软硬件组成,不仅使开发效率低下,而且使得开发一套复杂测试系统的价格高昂[1]。 目前,传统的分析仪表正在更新换代,向数字
引言 传统测试系统由于专用性强、相互不兼容、扩展性差、缺乏通用化、模块化,不能共享 软硬件组成,不仅使开发效率低下,而且使得开发一套复杂测试系统的价格高昂[1]。 目前,传统的分析仪表正在更新换代,向数字
基于FPGA的可重构智能仪器设计
基于FPGA的可重构智能仪器设计