摘要:工业温度控制系统具有非线性、时变性和滞后性等特性,严重影响温度控制的快速性和准确性,为了解决常规PID参数调节在温度控制中适应性差,调节效果不理想的问题,这里采用了模糊PID参数自整定控制方法,用模糊
摘要:为了提高传统温度控制系统的性能,将PID控制理论与嵌入式系统相结合,采用瑞萨电子公司的H8S/2166作为核心处理器,AD公司的AD7705以及热敏电阻温度传感器作为温度检测单元,利用4x6小键盘、LCD显示器和S1D133
基于μC/OS-II的智能拆焊、回流焊温度控制系统
本文介绍TEC驱动芯片MAX1968的控制原理及其特点,并给出了该芯片的应用设计方案,同时讨论了构成系统的各部件选择方案或原则,对不同的LD和TEC只要恰当地选择外围器件,用MAX1968构建的温度控制系统可以快速稳定地达到所设定的温度值,稳定性可达到0.01℃。
本文介绍TEC驱动芯片MAX1968的控制原理及其特点,并给出了该芯片的应用设计方案,同时讨论了构成系统的各部件选择方案或原则,对不同的LD和TEC只要恰当地选择外围器件,用MAX1968构建的温度控制系统可以快速稳定地达到所设定的温度值,稳定性可达到0.01℃。
本文设计了一种用于压力传感器的温度控制系统,针对压力传感器在高温下易产生零点漂移等问题,加工了恒温封闭腔体,把压力传感器置入其中,通过控制系统控制腔体内的温度,解决了高温压力传感器大温度范围难以补偿的问题,从而可以提高测量精度,通过仿真和实验相印证,本方案是可行的。
总体设计思想是以SST89E564RC单片机为控制核心,整个系统硬件部分包括温度检测部分、控制执行部分、显示及键盘系统及最小系统基本电路。系统利用单片机获得温度传感器数据并与系统设计值进行比较,根据比较结果分别控制执行系统。
摘要:基于ARM9系列的S3C2410处理器,结合嵌入式linux操作系统,完成硬件驱动程序和模糊自整定PID控制算法的设计,实现全自动生化分析仪反应池温度的高精度控制。运行结果表明,所设计的控制系统具有响应快,稳定性、
基于ARM9在高精度生化分析仪温度控制系统中的应用
基于ARM9在高精度生化分析仪温度控制系统中的应用
1. LOGO!性能及特点 LOGO!是SIEMENS公司推出通用逻辑控制模块,是一种将编程器和主机一体化的超小型可编程序控制器。LOGO内部集成有:控制功能、操作和显示单元。有一个用于扩展模块的接口、一个用于程序模块和
针对SiC高温MEMS压力传感器易受温度影响,产生零点漂移、测量误差增大等问题,设计了一种温度控制系统,根据科恩-库恩公式建立了系统的数学模型,采用参数自整定PID控制算法,克服了纯PID控制有较大超调量的缺点,实现了一个温度控制系统。利用Matlab仿真软件的Similink模块建立系统的仿真模型,通过仿真和测试验证系统满足设计要求。解决了大温度范围下压力传感器难以补偿的问题,使得压力传感器在高温环境下的应用得以实现,提高了压力传感器的稳定性。
基于预测神经网络和DSP高速数字处理相结合的构建原理,采用BP神经网络算法进行系统参数的调整,同时利用DSP数字信号高速处理运算,对锡炉温度实现了在线实时控制。实验表明,控制系统的动态响应快,跟踪能力强,稳态精度高,有较强抗扰动能力。
基于预测神经网络和DSP高速数字处理相结合的构建原理,采用BP神经网络算法进行系统参数的调整,同时利用DSP数字信号高速处理运算,对锡炉温度实现了在线实时控制。实验表明,控制系统的动态响应快,跟踪能力强,稳态精度高,有较强抗扰动能力。
传统的温度控制系统是以热敏电阻为温度传感器件,辅以风冷或水冷来达到目的的,存在体积大,噪音大且精度有限的缺点。介绍了利用数字温度传感器(DSl8B20)与DSP芯片(TMS320F2812)组成的温度测量系统,结合模糊PID算法(Fuzzy-PID),利用DSP的脉宽调制控制通过半导体制冷器的电流大小,达到温度控制的效果,体积小且精度达到O.1℃。给出DSP与DSl8820的接线图,并且介绍了利用CCS(代码编辑工作室)进行软件开发。该系统已经运用在LD温度控制方面,取得了很好的效果。
传统的温度控制系统是以热敏电阻为温度传感器件,辅以风冷或水冷来达到目的的,存在体积大,噪音大且精度有限的缺点。介绍了利用数字温度传感器(DSl8B20)与DSP芯片(TMS320F2812)组成的温度测量系统,结合模糊PID算法(Fuzzy-PID),利用DSP的脉宽调制控制通过半导体制冷器的电流大小,达到温度控制的效果,体积小且精度达到O.1℃。给出DSP与DSl8820的接线图,并且介绍了利用CCS(代码编辑工作室)进行软件开发。该系统已经运用在LD温度控制方面,取得了很好的效果。
针对在工业生产过程中经常需要高稳定度的恒温环境,传统模拟式仪表结合简单的PID控制较难达到目标的情况,提出了基于数字PID控制算法和89C52单片机的温度控制系统。该系统通过温度传感器DSl820对温度进行采样和转换,然后执行数字PID控制,输出控制量来调节可控硅触发端的通断,从而实现对温度的控制。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整。结果表明:通过将数字PID算法和89C52单片机结合使用,使整个控制系统的温度控制精度提高了10%,输出温度的误差小于2%,不仅满足了对温度控制的要求,而且还可应用到对其它变量的控制过程当中。
CB3LP芯片是北京泛析智能控制技术有限公司依据自主知识产权的科研成果“直觉智能控制技术”(Sensorial Intelligence Control,简称“SIC”),而研制成功的一种芯片产品。该产品采用提高难控被控对象闭环自动控制性能
CB3LP芯片是北京泛析智能控制技术有限公司依据自主知识产权的科研成果“直觉智能控制技术”(Sensorial Intelligence Control,简称“SIC”),而研制成功的一种芯片产品。该产品采用提高难控被控对象闭环自动控制性能的平台技术,使工程师能够简便迅捷地设计各种全智能模糊控制器。