抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。
随着自动驾驶技术的快速发展,自动驾驶汽车正逐步从概念走向现实。然而,在复杂的交通环境和多变的天气条件下,自动驾驶汽车需要面对诸多挑战,其中之一便是电磁干扰(EMI)问题。毫米波雷达作为自动驾驶汽车中的核心感知器件,其性能在电磁干扰环境下的稳定性直接关系到自动驾驶汽车的安全性和可靠性。本文将深入探讨在电磁干扰环境下验证基于毫米波雷达的自动驾驶功能的重要性、挑战及解决方案。
在电子设备的设计与制造中,电磁干扰(EMI)的控制与抑制一直是工程师们面临的重要挑战之一。随着设备的小型化、集成化趋势加剧,如何在确保低EMI的同时缩小电源尺寸,成为了亟待解决的问题。集成式有源EMI滤波器作为一种创新的解决方案,以其独特的优势在降低EMI和缩小电源尺寸方面展现出了巨大的潜力。本文将深入探讨集成式有源EMI滤波器的工作原理、优势及其在降低EMI和缩小电源尺寸方面的应用。
在电子技术的飞速发展中,电磁干扰(EMI)问题一直是工程师们面临的重大挑战。随着设备集成度的提高和频率的上升,EMI问题愈发凸显,成为制约许多高性能电子设备性能提升的关键因素。然而,通过技术创新,特别是磁隔离技术的突破,我们有望在实现高性能的同时,有效抑制EMI,实现“鱼与熊掌兼得”的目标。
在电子系统的设计中,电磁兼容性(EMC)是一个至关重要的考虑因素。EMC设计旨在确保系统、分系统、设备在共同的电磁环境中能够协调地完成各自的功能,避免因电磁干扰导致的性能降级或失效。电容作为电子系统中广泛应用的元件,其选择与使用对EMC设计具有深远的影响。本文将从电容的基本认识出发,探讨电容在EMC设计中的作用、选择原则及其对EMC性能的影响。
在现代照明技术中,LED灯具以其高效能、长寿命和环保特性逐渐成为市场主流。然而,低成本LED灯具在实际应用中常面临电磁干扰(EMI)的问题,这不仅影响灯具的稳定性和使用寿命,还可能对周围环境中的其他电子设备造成不良影响。为此,Diodes公司推出的AL8807降压型开关模式LED驱动器,以其独特的设计和高性能表现,为解决低成本LED灯具的电磁干扰问题提供了有效方案。
在快速发展的便携式电子设备市场中,电磁干扰(EMI)和射频干扰(RFI)问题日益凸显,成为制约设备性能和市场接受度的关键因素之一。为了应对这一挑战,安森美半导体(ON Semiconductor)凭借其技术创新,推出了业界最小的有源时钟发生器IC,旨在显著降低便携应用中的电磁干扰,为设计师们提供了一种高效、紧凑的解决方案。本文将深入探讨这款产品的技术特点、工作原理、应用优势及未来展望。
在电力系统中,强弱电之间的电磁干扰是一个长期存在的问题,它不仅影响电力系统的稳定运行,还可能对通讯、数据传输等弱电系统造成严重的干扰,甚至引发安全事故。为了有效抑制这种干扰,谐振接地作为一种重要的技术手段,被广泛应用于电网设计中。本文将深入探讨谐振接地的工作原理、优势及其在抑制强弱电干扰方面的应用。
在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决LED驱动电源的电磁干扰问题显得尤为重要。本文将从软开关技术、开关频率调制技术和电磁干扰滤波器三个方面,详细探讨解决LED驱动电源电磁干扰的三大硬件措施。
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
在现代电子系统设计中,电源不仅是设备正常运行的基石,也是电磁干扰(EMI, Electromagnetic Interference)的主要来源之一。EMI不仅会影响电源自身的稳定性和效率,还可能对系统中的其他电子设备造成干扰,导致整体性能下降甚至故障。因此,在电源设计阶段就充分考虑并有效管理EMI,是确保电子系统电磁兼容性(EMC, Electromagnetic Compatibility)的关键。本文将深入探讨电源设计中EMI的产生机制、传播路径以及优化策略,以期为工程师们提供实用的参考和指导。
随着现代电子技术的飞速发展,电子设备在各个领域的应用日益广泛。然而,电子设备在工作过程中产生的电磁干扰(EMI)问题也日益凸显,成为影响设备性能、稳定性和兼容性的重要因素。为了确保电子设备的正常运行和满足电磁兼容性要求,传导性EMI量测系统应运而生。本文将对传导性EMI量测系统的构架及原理进行详细介绍。
随着电子技术的飞速发展,电磁干扰(EMI)问题愈发凸显其重要性。在电子设备的设计、生产和应用过程中,电磁干扰不仅会影响设备的正常运行,还可能对周围环境和其他设备造成不良影响。因此,深入了解EMI电磁干扰的传播过程,对于预防和解决EMI问题至关重要。本文将从EMI的基本概念、传播机制、影响因素以及应对策略等方面进行详细阐述,帮助读者轻松搞懂EMI。
电子设备在各行各业中得到广泛应用。然而,随着电子设备密度的增加和工作频率的提高,电磁干扰问题日益凸显。
美国的电磁干扰标准是FCC,CISPR-22与FCC有所不同,但一般来说如果电源符合CISPR-22标准,那么它也符合FCC标准。
世界上只有两种电子工程师:经历过电磁干扰的和没有经历过电磁干扰的。伴随着PCB信号频率的提升,电磁兼容设计是我们电子工程师不得不考虑的问题。
未来汽车的自动驾驶等级会越来越高。 自动驾驶汽车会配置越来越多的传感器来保证汽车在复杂的交通场景和恶劣的天气条件下可靠运行。
开关电源在工作过程中会产生各种电气噪声,如开关干扰、电磁干扰等。这些噪声会对控制信号和被控信号产生干扰,导致系统工作不稳定甚至出错。
电磁干扰 (EMI) 是我们生活的一部分,无论是否是工程师。电子解决方案的普及是一件好事,因为电子设备为我们的生活带来了舒适、安全和健康