C183与C180基本上是一样的,不同的仅是计数码制不同,C180是2-10进制,C183是四位二进制.C183的管脚外引线排列和功用同C180(见图)C183的真值表如表9.30所示,功能如31所示.
C182可预置数1/N计数器基本上是一个减法计数器,均由四个"T"型触发器和附加控制门组成,具有级连N个计数器而无需外接附加控制电路.1/N计数器包括同步减法计数器和"0"输
C180(CMOS)2-10进制同步加法计数器由同步的四级D型触发器组成.它的管脚外引线排列和功用如图所示,C180 2-10进制同步加法计数器的真值表如表9.23所示,它的功能如表9.24所示.从真值表和功能表可知,C180 2-10进制同步加
T216是2-10进制同步可预置计数器,它的电源电流ICC小于94MA,计数工作频率约为10MHZ,CP到输出的平均延迟时间小于45NS,T216管脚的外引线排列及功用如图所示,T216真值表如表9.19所示,功能表如表9.20所示.
T214 2-16进制同步可预置计数器,它主主要电参数是:电源电流ICC小于94MA,计数工作频率FM>10MHZ,CP到输出的平均延迟时间小于45NS.T214的管脚外引线排列及功用如图所示.T214的真值表如15表所示,他的功能表如16表所示.我
T211计数器和T210计数器相比,在形成BCD-8421码或5421码计数输出上完全一样,但T211增加了四位数预置的功能.T211管脚的外引线排列及功用如图所示.
T210计数器(TTL)是异步计数器,它的内部有四个触发器,第一个触发器有独立的时钟输入CP1和输出QA,其余三个触发器以五进方式相连,其时钟输入为CP2,输出为QB,QC,QD.T210的管脚外引
利用CPLD实现数字滤波及抗干扰
为减小导通损耗及反向恢复损耗,同步整流需要精确的时间控制电路,虽然已有几种方法来产生控制信号,我们现在采用一种从反馈系统来有源控制的栅驱动信号的定时系统。其关键优点在于该电路将根据元件状态的变化来特
摘 要: 为满足三维大地电磁勘探技术对多个采集站的同步需求,基于FPGA设计了一种晶振频率校准系统。系统可以调节各采集站的恒温压控晶体振荡器同步于GPS,从而使晶振能够输出高准确度和稳定度的同步信号。系统中
基于VHDL和FPGA的多种分频的实现方法
同步SRAM的传统应用领域是搜索引擎,用于实现算法。在相当长的一段时间里,这都是SRAM在网络中发挥的主要作用。然而,随着新存储技术的出现,系统设计师为SRAM找到了新的用武之地,如:NetFlow(网流)、计数器、统
SRAM在网络中的应用
基于数字频率合成技术给出一种高速任意波形发生器的设计方案,详细介绍各个模块的硬件电路设计以及MCU部分的软件设计。该方案采用高速波形数据存储器、高速D/A转换器以及奇偶数据选择电路,任意波形采样速率可达200 MS/s,任意波形的最高输出频率可以达到50 MHz。针对不同的输出波形,波形输出电路采用七阶椭圆滤波器以及高斯滤波器以减小波形失真。该方案具有输出波形数据不丢失、输出波形稳定等特点。
传统测量方法有2种,一种是测频法(M 法),是对被测信号在闸门时间(T—Nfo,N 个基准信号脉冲的时间)内的脉冲进行计数(计数值为M),被测信号的频率为,误差为 另一种是测周法(T法),是在被测信号一个周期内对
X系列设备是National Instruments设计至今最高级的多功能数据采集(DAQ)设备。借由易用型NI-DAQmx驱动软件的X系列设备,引入高性能改良,可满足最苛刻的数据采集应用。结合NI-STC3定时与同步技术、高处理能力的PCI Ex
基于市场对设备集成化、微型化的要求,采用数字电位器代替机械电位器,提高系统的可靠性和可控性。介绍了数字电位器的基本工作原理。并与机械电位器进行比较。以X9313型数字电位器为例,阐述了数字电位器的典型应用,可利用微处理器直接控制数字电位器。试验表明,该数字电位器具有存储或设置数据的功能,易于软件控制,大大减少人为误差,密封性好,并能提高系统的可靠性。
电力系统的频率反映了发电机组发出的有功功率与负荷所需有功功率的平衡情况。高精度和高可靠性的频率测量对整个电力系统的稳定运行有着至关重要的作用,机组在开停机过程中,频率变化范围比较大,变化速度比较快,传
PEMFC氢能发电机发出的是变化范围较大的直流电,必须经过稳压、逆变等转换后,获得稳定的输出电压后才能应用于负载。在PEMFC发电机的控制系统电源采用自发电供电时,电源系统需要适应发电机的输出特性。控制系统正常
PEMFC氢能发电机发出的是变化范围较大的直流电,必须经过稳压、逆变等转换后,获得稳定的输出电压后才能应用于负载。在PEMFC发电机的控制系统电源采用自发电供电时,电源系统需要适应发电机的输出特性。控制系统正常