电路的功能本电路是在有OP放大器的电桥电路中连接热敏电阻获得与温度变化成正比的输出电压,温度测量范围:-50°C~+150°C。电路工作原理给电桥加上稳定的+5V基准电压后,热敏电阻上就会有恒定的电流流过,在桥路的另
电路的功能在恒流输出电路中,如负载电阻增大,使IO.R产生的电压超过电源电压,电路就不能在恒状态下工作。本电路采用浮地的正负15V和+250V电源,可以获得大于200V的负载电压。电路工作原理输入电压E1N为0~-10V,被R
电路的功能在恒流输出电路中,如负载电阻增大,使IO.R产生的电压超过电源电压,电路就不能在恒状态下工作。本电路采用浮地的正负15V和+250V电源,可以获得大于200V的负载电压。电路工作原理输入电压E1N为0~-10V,被R
引言 在对某型发射装置进行检测时.需要提供三组以11.50伏为基准的精确直流电压信号。为配合测试流程,这三组信号需要在不同的时段取18个不同的直流电压值,幅度分布在9.33-12.13伏范围之内。原有的测试仪采用22
这篇关于低压IC的文章讨论了多种型号的低压IC,其中包括:电压调节器、数据转换器、运算放大器、电流监测器、比较器、微处理器监控电路、电压基准、模拟开关以及数据收发器。此外,本文还讨论了关于省电以及低压系统
对于一个电池供电的系统而言,整个系统的效率是一个重要设计参数。它既影响着电池的容量需求,也影响到终端产品的工作时间。而只有电源效率测量精确时才能得出系统正确的效率以及运行时间。大多数的电池供电系统在低
这篇关于低压IC的文章讨论了多种型号的低压IC,其中包括:电压调节器、数据转换器、运算放大器、电流监测器、比较器、微处理器监控电路、电压基准、模拟开关以及数据收发器。此外,本文还讨论了关于省电以及低压系统
这篇关于低压IC的文章讨论了多种型号的低压IC,其中包括:电压调节器、数据转换器、运算放大器、电流监测器、比较器、微处理器监控电路、电压基准、模拟开关以及数据收发器。此外,本文还讨论了关于省电以及低压系统
这篇关于低压IC的文章讨论了多种型号的低压IC,其中包括:电压调节器、数据转换器、运算放大器、电流监测器、比较器、微处理器监控电路、电压基准、模拟开关以及数据收发器。此外,本文还讨论了关于省电以及低压系统
一、概述太阳能的利用虽然有很多方法,但是像超大功率的太阳能发电站、家庭屋顶发电等都不适合中国的国情,唯一最简单而最容易实现的是太阳能路灯。我国的路灯总数超过1亿盏,只要其中的6000万盏改成太阳能路灯,其每
不管我们是否要控制输出电压或输出电流,Boost调节器都要比Buck调节器更难设计。持续导通状态(CCM)Boost转换器中的平均感应电流等于负载电流(LED电流)乘以1/(1-D),这里D是占空度。Boost电压调节器需要设计者考
不管我们是否要控制输出电压或输出电流,Boost调节器都要比Buck调节器更难设计。持续导通状态(CCM)Boost转换器中的平均感应电流等于负载电流(LED电流)乘以1/(1-D),这里D是占空度。Boost电压调节器需要设计者考
不管我们是否要控制输出电压或输出电流,Boost调节器都要比Buck调节器更难设计。持续导通状态(CCM)Boost转换器中的平均感应电流等于负载电流(LED电流)乘以1/(1-D),这里D是占空度。Boost电压调节器需要设计者考
虽然在输出电压可能高于也可能低于输入电压时,峰值电流模式控制的非连续升降压转换器是LED驱动器的一个不错选择。但是,采用这种升降压转换器来设计驱 动器时,LED电压的变化会改变LED电流,LED开路将导致输出端产生
虽然在输出电压可能高于也可能低于输入电压时,峰值电流模式控制的非连续升降压转换器是LED驱动器的一个不错选择。但是,采用这种升降压转换器来设计驱 动器时,LED电压的变化会改变LED电流,LED开路将导致输出端产生
虽然在输出电压可能高于也可能低于输入电压时,峰值电流模式控制的非连续升降压转换器是LED驱动器的一个不错选择。但是,采用这种升降压转换器来设计驱 动器时,LED电压的变化会改变LED电流,LED开路将导致输出端产生
USB充电器套件,又名MP3MP4充电器,输入AC160-240V,50/60Hz,额定输出:DC 5V 250mA(标签贴纸为500mA,如果要长期输出更大电流,请更换Q1为13003)。MP3和MP4在全国范围大量流行,不过作为日常用品的充电器由于直接
本文介绍了以51系列单片机为控制单元,以数模转换器DAC0832输出参考电压,以该参考电压控制电压转换模块LM350的输出电压大小。该电路设计简单,应用广泛,精度较高等特点。引言 目前所使用的直流可调电源中,几
烹饪过程中不仅会产生热量,同时也会释放大量的水蒸气和冷凝水蒸汽。厨具电子控制装置中的电源必须在高达105℃的环境温度及高湿度条件下发挥稳定性能。除了要满足国际性EMI及安全标准之外,电源还必须有助于促进日益
本文设计的过度放电预充、恒流快充、恒压涓充、智能控制的充电方案,能很好地解决电动自行车用电池在充电过程中存在的过充电、充电不足和发热等问题,并能根据不同电池选择不同的充电方案。而且具有通用性。