在ARM微处理器中移入嵌入式实时操作系统μC/OS-II,使系统的稳定性、实时性得到保证,实时操作系统将应用分解成多任务,简化了应用系统软件的设计;采用CPLD器件集成了电路的全部控制功能,摆脱了单纯用由微控制器为核心的数据采集系统时的速度瓶颈,极大提高了数据采集速度。整个系统具有速度高、实时性好、抗干扰能力强、性价比高等特点。
文介绍了一种应用于高速数据采集的数字系统,该系统由高速模数转换器FPGA,SDRAM(synchronous dynamicrandomaecess mereory)组成。该系统独立于处理器之外,给处理器预留了总线接口。任何的处理器只要把总线接口连接到此系统上,均可操作。与传统的数据采集系统相比,减少了处理器的控制,而且处理器的处理速度已不再影响系统的性能,提高了速度和效率,具有通用性。本文对高速模数转换器与FPGA的接口实现做了详细的描述,对如何把模数转换器的数据流进行缓冲做了介绍。并对如何在FPGA中构建SOPC(systerm on programmable chip)系统以及如何利用SOPC实现SDRAM的控制与存储进行了说明。经测试,本系统的数据采集的实时速度最高可达到250 MB/s,适用于大部分的高速数据采集场合。
采用FPGA的高速数据采集系统
摘要:随着雷达、通信、遥测、遥感等技术应用领域的不断扩展,人们对数据采集系统的采集精度、采集速度、存储量等 都提出了更高的要求。针对当前数据采集系统的缺点,提出了基于ARM9的数据采集系统的设计。详细论述
摘 要:为了用单片机实现对变化速度极快、变化过程极短的高速瞬态行波信号进行采样,研究了一种以DS80C320单片机为控制器。结合适当的外围电路和合理的控制逻辑构成的高速同步数据采集系统。阐述了快速寻址的方
直接存储器存取方式不仅具有高速度、高效率的特点,而且CPU资源占用少,因此在需要高速、批量交换数据的场合得到了广泛的应用。在DOS下编写DMA控制程序并不难,但要编制出精美实用的界面则是一件非常繁琐的工作,而且效果
基于USB2.0与FPGA技术的高速数据采集系统的设计
基于FPGA的多片RAM实现高速数据的存储和传输的方案,并应用于1GS/s数据采集系统中.可以保证采集数据的可靠稳定存储.
介绍了一种基于USB接口的高速数据采集系统的设计与实现。该系统采用AVR单片机ATmegal28作为主控制器,通过基于CH375的USB接口实现数据传输。
医学超声成像是利用超声波通过人体各组织时所反映的声学特征的差异来区分不同组织,并以图像的形式显示出脏器的界面和组织内部的细微结构。
医学超声成像是利用超声波通过人体各组织时所反映的声学特征的差异来区分不同组织,并以图像的形式显示出脏器的界面和组织内部的细微结构。