在 CMOS 和宽带隙半导体技术的进步中,您很容易忘记 William Shockley 于 1949 年发明的第一个晶体管是双极结型晶体管 (BJT)。尽管它们已经不再流行,但这些不起眼的设备仍然在各种类型的电子设备中大量高效可靠地运行。事实上,在某些应用中,BJT 的性能可以超越更杰出的 CMOS 同类产品。 BJT 技术的最新改进将使它们成为半导体技术领域的重要组成部分。
类似的原理也可以应用于任何使用差动信号的高速接口技术。事实上,随着数据传输速度的加快,需要增加对这些项目的关注。随着数据速率进入Gbps范围,过程和板几何形状变得更小,在短得多的传输距离时,串扰等不必要的影响会成为一个问题。
在模拟数字转换器(ADC)空间,目前主要有三种类型的数字输出使用的ADC制造商。如本文之前部分所述,这三种输出是互补金属氧化物半导体(CMOS)、低压差动信令(LVDS)和电流模式逻辑(CML)。
目前,已经有两个标准已经编写来定义LVDS接口。最常用的ANSI/TIA/EIA-644规范,题为"低压差动信令(LVDS)接口电路的电气特性。另一种是题为"用于可伸缩相干接口的低压差动信号(LVDS)标准"的IEEE标准159.3。"
由于设计者可以选择许多类似数字转换器,在选择过程中需要考虑的一个重要参数是包括的数字数据输出类型。目前,高速转换器使用的三种最常见的数字输出类型是互补金属氧化物半导体(CMOS)、低压微分信号(LVDS)和电流模式逻辑(CML)。
当前端侧AI正在快速落地推进,而智能车载领域尤为活跃,特别是在国内市场,智能车载的快速发展引人注目。据Yole预测,2023年至2029年,全球车载摄像头市场规模将从57亿美元增至84亿美元。但目前车载视觉系统方案尚未统一,既有大域控制架构的探索,也有分布式架构的应用。而在分布式架构的应用场景中,面临的主要挑战在于如何更好地融合图像传感器与SoC,以实现性能与成本的最佳平衡。此外,在技术层面,需要通过更先进的平台工具和AI加速技术,结合图像性能优化手段,推动技术的迭代与升级。
一直以来,CMOS电路都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来CMOS电路的相关介绍,详细内容请看下文。
集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。
在这篇文章中,小编将对BJT的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。
在现代通信及电子系统中,锁相环(Phase-Locked Loop, PLL)是一种重要的频率同步与控制技术。CMOS电荷泵锁相环(Charge Pump Phase-Locked Loop, CPPLL)因其开环增益大、捕获范围宽、捕获速度快、稳定度高和相位误差小等优势,被广泛应用于无线通信、时钟恢复及频率合成等领域。然而,传统CMOS电荷泵锁相环电路存在电流失配、电荷共享和时钟馈通等问题,这些问题限制了其性能和应用范围。本文设计了一种改进型的CMOS电荷泵锁相环电路,通过优化电荷泵电路和增加开关噪声抵消电路,有效解决了上述问题,并扩展了锁相环的锁频范围。
本文中,小编将对CMOS运放设计予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。
在这篇文章中,小编将对一个模拟开关应用电路进行纠错,并对错误的模拟开关应用电路进行改正。通过这篇文章,小编希望大家可以对模拟开关应用电路有所认识和了解,详细内容如下。
在现代电子技术的发展中,集成电路作为电子系统的核心,其性能和技术水平直接决定了整个电子系统的性能和可靠性。CMOS(Complementary Metal-Oxide-Semiconductor)数字集成电路,作为当前应用最广泛的集成电路技术之一,其独特的结构和优异的性能使其在计算机、通信、消费电子等众多领域发挥着至关重要的作用。本文将对CMOS数字集成电路进行详细介绍,并探讨其特点。
据思特威销售总监宗翔(Will Zong)介绍:“全局快门的传感器,会分为全局快门和卷帘快门两种技术。全局快门的产品,参数上帧率会达到120帧,或者240帧甚至更高,卷帘快门一般做一些监控类应用的话,帧率只有30帧,全局快门更适合于拍摄快速移动的物品,这个才是全局快门和卷帘快门最主要的区别。”
索尼亟需打破自身保守谨慎的态度,双管齐下智能手机与汽车市场,在技术研发上秉持创新精神,推出更具竞争力的CIS“黑科技”,才能在下半场的市场争夺战中站稳脚跟,否则就只能看着三星一路高歌了。资本市场往往以利益为重,不料被政治横插了一脚。在遭受美国连续几轮打压后,华为不堪重负,高端手机出货量骤减。而产业链上下游市场牵一发而动全身,索尼(Sony)在内的供应链企业成了华为禁令的间接受害者,营收额下滑不说,铠侠(Kioxia)甚至推迟了IPO计划。
柔性半导体对于未来的可穿戴电子技术至关重要,但一直难以集成到复杂的架构中。现在,在最近发表在Advanced Electronic Materials上的一项研究中,来自日本的研究人员已经开发出一种直接的方法来制造用于高级电路的高质量软半导体。
按照我的理解,对于MOS管而言,灌电流就是漏极电流 Id,正常来说MOS管的漏极电流 Id远远超过4mA,但是为了满足逻辑要求,如上图所示,CMOS输出最大低电平必须小于输入最大低电平,即VOL(max)我去搜了一下STM32F103C8T6的关于灌电流的描述,对于8路I/O口同时输出低电平时,VOL
众所周知,当 V GS 在增强模式下为正时,N 型耗尽型 MOSFET 的行为类似于 N 型增强型 MOSFET;两者之间的唯一区别是 V GS = 0V时的漏电流 I DSS量。增强型 MOSFET 在栅极未通电时不应泄漏任何电流,因此当 V GS = 0V 时 I DSS必须 为 0,但当 V GS = 0V 时允许 I DSS电流流过耗尽型 MOSFET 的传导通道 。
为增进大家对MEMS的认识,本文将对MEMS和CMOS的区别予以介绍。
关于研究大脑的故事也是一个关于为此设计技术的故事。过去几十年最成功的神经科学设备之一是神经探针或微小的针状大脑植入物,它们可以从单个神经元接收信号。记录大脑活动提供了一个独特的视角,以了解神经元如何在复杂的电路中进行交流以处理信息和控制行为。最终需要大规模的录音来了解大脑的工作原理并开发更先进的脑机接口。