对于超薄介质,由于存在大的漏电和非线性,通过标准I-V和C-V测试不能直接提取氧化层电容(Cox)。然而,使用高频电路模型则能够精确提取这些参数。随着业界迈向65nm及以下的节点,对于高性能/低成本数字电路,RF电路,以及模拟/数模混合电路中的器件,这方面的挑战也在增加。
E5052B上的瞬态测试功能是分析信号时域变化的强大工具,用户可以利用该测试功能分析其信号的频率,幅度,相位的时域变化。
随着日益增加的智能手机和无线互联网3G覆盖范围以及4G系统即将引入带来的持续压力,数字通信射频组件的设计活动越来越丰富。设计活动的前沿在于功率放大器(PA)的开发。PA设计工程师面对的首要问题是功率所增加的效率(PAE)。
目前,研发和生产经理以及工程师们正面临着许多严峻的挑战,而且每个团体也有着自身独特的需求。例如在生产阶段,工程师需要缩短测试时间,同时提高吞吐率和产量。此时最重要的就是速度。
目前广泛应用于各种射频电路中的贴片电容因其尺寸和电容量均较小,没有比较合适的射频段测试仪器。
无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。
对于用于CDMA2000与W-CDMA基站的大功率放大器(HPA)的设计师来说,他们面临许多完成精确发射功率测量的挑战。
无线基站发射信号和接收由移动台发射的信号都是通过天馈线系统来完成的,因此天馈线系统安装质量和运行情况的好坏将直接影响到通话质量、无线信号的覆盖和收发信机的工作状态。
无线数字通讯系统,卫星数字通讯系统,数字通讯电台等都存在调制器和解调器,在研发和测试这些系统时,调制器和解调器的绝对延时也是我们应该关注和应该测试的一个项目。
三阶交截点(IP3)是衡量通信系统线性度的一个重要指标,他反映了系统受到强信号干扰时互调失真的大小。当系统的IP3较高时,要精确测试IP3会比较困难,因为测试环境中各种因素(如测试配件的隔离度、线性度和匹配性等)都容易影响高IP3的测试。
由于衰减效应严重影响了通信网络的运行,因此PIM在无线通信领域越来越受关注。只要当两个频率以上的信号遇到一个非线性的电学结或类似物质,就会产生互调。其结果是产生了我们不想要的信号,这个信号的频率可以由最初的原始频率经过计算得到,它可以导致系统容量的减少,和(或)通话质量的降低。
随着4GLTE网络逐步在全球铺开,其数据传输速度高于蜂窝3G系统,但由于它使用了重叠的频段,产生了新的互调干扰源(IMsource),带来了日益严峻的干扰问题。
系统软件用户界面可以完成所有测量参数的输入和设置并及时响应用户操作,除此线程外建立额外的工作者线程实现其他功能的并行工作,提高系统实时性,在用户界面实时更新显示仪器的运行状态和系统的测量进度以供用户了解系统状态,同时对测量数据进行实时地读取和保存,便于后期的进一步处理和研究。
这些穿戴式装置对厂商来说除了要功能够先进与实用来取得消费者的喜爱外,面临另一最大挑战就是如何使穿戴式装置能体积极小化与长时间使用。要能长时间使用这些装置除了电池容量要够大外,最根本就是穿戴式装置本身能够省电,这就是目前各厂商在产品测试量测上面临最大的问题-功耗量测。
在研发领域,高测试精度可以保证设计仿真和真实测量之间的可复验性很高,并有助于发现在仿真过程中未予以考虑的噪声来源。在生产和制造领域,更高的测试精度意味着在设定和验证器件的技术指标时可以把指标的余量设定得更小。