关闭

功率器件

所属频道 电源
  • 原创

    电动工具中三相电机驱动器的优化热设计 - 第 1 部分

    每个人都喜欢电动工具,无论是无绳的还是有线的。无绳工具可以使用有刷或无刷直流 (BLDC) 电机。但是,无刷电机效率更高,维护更少,噪音更低,使用寿命更长。在这个由两部分组成的博客系列中,我们将首先讨论这些电动工具中使用的三相电机驱动器的热设计基础知识,然后讨论可用于您的设计的选项。

  • 原创

    差分到单端:仅使用一个差分放大器即可

    许多应用都需要使用低功耗、高性能的差分放大器,将小差分信号转换成可读的接地参考输出信号。两个输入端通常共用一个大共模电压。差分放大器会抑制共模电压,剩余电压经放大后,在放大器输出端表现为单端电压。共模电压可以是交流或直流电压,此电压通常会大于差分输入电压。抑制效果随着共模电压频率增加而降低。相同封装内的放大器拥有更好的匹配性能、相同的寄生电容,并且不需要外部接线。因此,相比分立式放大器,高性能、高带宽的双通道放大器拥有更出色的频率表现。

  • 原创

    不要延时,对电流隔离器的基本需求

    数字电流隔离在世界范围内发挥着重要作用。它做了一件了不起的事情:它可以保护不稳定的产品免受计划外的电子反冲,就像一套盔甲可以抵御战场上意想不到的弹跳一样。

  • 原创

    “驱动”子系统与电压电平转换器互连

    过去的汽车信息娱乐系统主要基于 5V 和 3.3V 电压电源。这是因为 12-14V 电池在汽车系统中很容易获得,可以降压到较低的电压。然而,有几个关键因素推动了信息娱乐系统、高级驾驶辅助系统 (ADAS)和集群系统对低电压操作的需求。

  • 原创

    如何选择合适的精密放大器

    根据我们正在处理的应用,较小的偏移电压并不总是意味着更高的精度或更好的直流性能。首先,我们需要确定最主要的错误来源。如果确实是输入失调电压,那么斩波稳定(零漂移)运算放大器 (op amps) 会派上用场。它们为我们提供最低的输入失调电压……是的,最低的漂移……是的,几乎没有 1/f 噪声。它们在高增益电路和更宽温度范围的应用中非常有用。

  • 原创

    电容感应传感器的电极相关的屏蔽尺寸和位置对性能的影响

    这篇文章我将讨论屏蔽传感器设计,以及与传感器电极相关的屏蔽尺寸和位置如何影响传感器性能。 屏蔽层相对于传感器的形状和位置是电容传感器设计中的一个重要因素。

  • TI几款通用PWM控制器TPS7H5001-SP等

    TPS7H500x-SP 系列(由 TPS7H5001-SP、TPS7H5002-SP、TPS7H5003-SP 和 TPS7H5004-SP 组成)是一个高速抗辐射 PWM 控制器系列。这些控制器提供了许多有益于设计用于空间应用的 DC-DC 转换器拓扑结构的功能。这些控制器具有 0.613 V ±1 % 准确的内部基准和高达 2 MHz 的可配置开关频率。每个器件都提供可编程斜率补偿和软启动。

    电源
    2022-06-10
  • 使用钳位二极管保护我们的电源电路

    客户经常问这些问题——而且有充分的理由。许多标准逻辑数据表没有明确指定输入高于 V CC或低于接地 (GND) 的条件。在这些边缘电压下,器件本身在数据表中几乎没有(如果有的话)性能特征。

  • 如何更有效地旋转步进电机,第 1 部分

    在实际应用中,我们喜欢步进电机,这已不是什么秘密。我们非常喜欢它们,因此我们致力于开发集成电路 (IC) 和开发工具,使步进电机更易于驱动。我们有小型 BoosterPacks来鼓励原型设计;创新产品功能,如自适应衰减,以消除电机调谐;以及具有集成索引器、集成或外部功率级以及全方位保护功能的大量驱动器 IC 。

  • 如何更有效地旋转步进电机 , 第 2 部分

    · 设计步进电机。 · 步进电机可能很耗电。 · 反电动势 (EMF) 将指示步进电机负载。

  • CAN 总线信号是什么样的?

    CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低功耗、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。

  • 了解 CAN 总线驱动程序的内部工作原理以及如何调试我们的系统

    CAN总线首先在汽车上得到了广泛应用,之后又在工业生产领域有了很大发展,那么面对不同的应用场景和工况,如何选择合适的网络拓扑结构慢慢成为一个让人头疼的问题。在这篇文章中,我将重点介绍用于驱动这些总线电压的 CAN 驱动器输出级的典型拓扑。对于曾经在 CAN 网络中遇到过发射问题或输出差分电压问题的任何人,本博客描述了驱动器的工作原理以及我们可以在数据表中查看哪些电气参数来识别良好的收发器。我相信对 CAN 驱动程序的基本了解也有助于调试出现的 CAN 问题。

  • 新技术消除了在物联网设备中使用或更换电池的需要

    瑞萨电子宣布了一项新技术,该技术无需在物联网设备中使用或更换电池。新的能量收集嵌入式控制器基于瑞萨电子突破性的 SOTB(硅上薄层掩埋氧化物)工艺技术。它极大地降低了活动和待机电流消耗,这是以前在传统 MCU 中无法实现的组合。 据该公司称,系统制造商将受益匪浅,因为他们将能够使用基于 SOTB 的嵌入式控制器的低电流水平,通过收集光、振动等环境能源,在其某些产品中消除对电池的需求, 和流动。

  • 探索用于超高密度存储的基于液体的存储器

    从 2030 年起,新型存储技术有望进入内存路线图,在延迟/生产力空间中补充 3D NAND 闪存、硬盘驱动器 (HDD) 和磁带。本文介绍了两种新的基于液体的存储概念:胶体和电石存储器。我们解释了基本操作原理,展示了第一个实验结果,并强调了它们在未来近线存储应用中的潜力。这些液态记忆最近在 2022 年国际记忆研讨会 (IMW) 的一篇受邀论文中提出。

  • SiC MOSFET:经济高效且可靠的大功率解决方案

    碳化硅(SiC)材料是功率半导体行业主要进步发展方向,用于制作功率器件,可显着提高电能利用率。可预见的未来内,新能源汽车是碳化硅功率器件的主要应用场景。特斯拉作为技术先驱,已率先在Model 3中集成全碳化硅模块,其他一线车企亦皆计划扩大碳化硅的应用。随着碳化硅器件制造成本的日渐降低、工艺技术的逐步成熟,碳化硅功率器件行业未来可期。