• PMDC 电机负载的 ACDC 电源启动注意事项第二部分

    如果电机的初始速度和启动时间不是时间关键的,并且在应用中可以接受更长的启动时间,另一种方法是在启动期间将隔离式 DC/DC 转换器的输出电压钳位一段比电机的电气时间常数。使用固定频率控制器,您可以钳制最大占空比。在电感-电感-电容 (LLC) 谐振转换器等变频转换器中,您可以钳位最小开关频率。

  • 电源设计说明:线性方案中的 SiC MOSFET

    SiC MOSFET 在开关状态下工作。然而,了解其在线性状态下的行为是有用的,这可能发生在驱动器发生故障的情况下,或者出于某些目的,当设计者编程时会发生这种情况。

  • 简单的电路指示锂离子电池的健康状况

    锂离子电池对不良处理很敏感。当我们将电池充电至低于制造商定义的裕量时,可能会发生火灾、爆炸和其他危险情况。 锂离子电池在正常使用的过程中,其内部进行电能与化学能相互转化的化学正反应。但在某些条件下,如对其过充电、过放电或过电流工作时,就很容易会导致电池内部发生化学副反应;该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量的气体,使电池内部的压力迅速增大后爆炸起火而导致安全问题。

  • 应用于电池容量测量的电路

    电池和能量电池会随着老化而失去容量。如果电池或电池的容量过低,我们的设备也可能很快停止工作。我们可以使用图 1 中的电路来测量电池的放电时间。该电路使用机电时钟和 DVM(数字电压表)。测试前电池应充满电。该电路以固定电流对电池进行放电,并测量电池从 100% 放电至 0% 所需的时间。

  • 为测试电池提供恒流负载的电路方案

    假设我们需要测试 1.5V、AA 尺寸的碱性电池。我们可以应用短路并测量电流,也可以测量开路电压,但两种方法都不能正确测试电池。大约 250 mA 的合适测试电流可为我们提供更合理的测试。我们可以在 1.5V 下使用 6Ω 电阻负载,如果电池状况良好,它会在 25°C 的环境温度下产生 1.46V 的输出电压。劣质电池可能产生低于 1.2V 的电压。给定负载,1.2V 的输出电流将为 200 mA 而不是 250 mA。电池将只有 80% 的满载电流。相反,我们可以使用图 1 中的电路 来产生恒流负载。

  • 重新审视电流功率监视器的重要性

    在之前的文章,我们讨论了低侧电流测量——当分流电阻器位于负载(或电源)和地之间时。低端检测的优点是共模电压基本上为 0V,这是一种非常简单直接的电流测量方法。最大的缺点是负载(或电源)通过分流电阻器与系统接地隔离(参见图 1)。这可以防止检测到可能导致系统损坏的负载短路接地。这也意味着它是单端测量——稍后会详细介绍。

  • 使用无电阻传感解决方案扩大电流测量范围

    测量系统中的电流是监控系统状态的基本但强大的工具。借助先进的技术,电子或电气系统的物理尺寸大大缩小,降低了功耗和成本,而在性能方面并没有太大的折衷。每个电子设备都在监控自己的健康和状态,这些诊断提供了管理系统所需的重要信息,甚至决定了其未来的设计升级。

  • 数字电源控制推进 GaN PFC 设计

    我最近与您分享了TI 全新 Piccolo™ F28004x 微控制器 (MCU) 系列的生产公告,该系列针对电源控制应用进行了优化。 Piccolo F28004x 用于高性能电源控制的主要特性包括:

  • 如何开始使用电流检测放大器应用第二部分

    在本系列的第一部分中,我讨论了与电流检测放大器规格相关的概念,以及如何使用应用要求来缩小器件选择范围。在本期中,我将讨论电流范围如何帮助得出分流电阻值,以及电流范围和分流值如何与器件性能相结合,从而在精度和功耗之间进行权衡。 直到最近发布的 TI INA250电流检测放大器(稍后会详细介绍),电流实际上并没有通过电流检测放大器。因此,被测量的电流范围并不直接决定设备规格。

  • 如何开始使用电流检测放大器应用第三部分

    在本系列的前几期中,我讨论了实现备选方案以及这些决策如何影响设备参数以及受设备参数影响。在这篇文章中,我将解释设备参数和系统因素如何影响可实现的精度。

  • 使用简单的电路驱动 TEC

    在光网络模块和其他通信系统中,您可能必须精确控制某个组件的温度。例如,激光器需要特定的温度才能发射特定波长的光。图 1 所示的热电冷却器 (TEC) 是一种常用设备,用于加热或冷却此类系统中的组件。

  • 电源提示:设计 LLC 谐振半桥电源转换器

    与传统的脉宽调制 (PWM) 电源转换器不同,谐振转换器的输出电压通过频率调制进行调节。因此,谐振转换器的设计方法将不同于 PWM 转换器。 LLC 谐振转换器透过设计电路产生谐振的方式,实现功率开关元件的软切换,能显著的提升转换器效率,因此广受业界喜爱。但你是否也觉得 LLC 谐振转换器的补偿难以调整,Transient Response 太慢?系统频宽太低?单纯的电压回授已经无法满足设计需求,但是受限于 LLC 无法使用峰值电流模式控制,没办法设计更优化的回授与补偿器?

  • 电源提示:四相 1.2 kW 设计可在更高电流下实现高效率

    为了应对工业和汽车行业日益严格的电源要求,多相设计是当今工程师的热门选择。对于超过 25A 的电流要求,越来越多的设计人员选择多相方法,因为它们具有关键优势。与单相设计相比,多相提供更低的输出纹波电压,以及更好的瞬态性能和更好的热性能,从而提高整体效率。

  • 电源提示:四相 1,200W 同步降压的设计注意事项

    在本文的第 1 部分中,我讨论了交错同步降压的四个相位以最小化输入/输出电压纹波并提高热性能的必要性。您可以通过遵循一些关键布局指南来进一步提高热性能,以确保功率在所有四个相位上均匀耗散。

  • 如何模拟我们的降压转换器控制回路?

    工程师选择关键功率元件后必须计算补偿值;这通常是通过非直观的数据表方程完成的,因此您可能不确定这些值是否正确。要确定,您需要在实验室中构建电源并测量其稳定性。 电压模式和 CM 降压转换器的不同之处在于其内部电路有些复杂。为了建模,有两个简单的模块:误差放大器和功率级增益。误差放大器查看输出电压,将其与内部参考电压进行比较,并生成误差信号。功率级增益模块是用于 VM 转换器的简单电压增益 (V/V),或用于 CM 转换器的跨导增益 (A/V)。

发布文章