整个电力电子行业,包括射频应用和涉及高速信号的系统,都在朝着在越来越小的空间内提供越来越复杂的功能的解决方案发展。设计人员在满足系统尺寸、重量和功率要求方面面临越来越苛刻的挑战,其中包括有效的热管理,从印刷电路板的设计开始。
电动汽车 (EV) 和混合动力电动汽车 (HEV) 正在寻找提高功率转换效率的解决方案。 长期以来,大多数电子功率器件都是基于硅的,硅是一种可以在加工过程中几乎不会产生任何缺陷的半导体。然而,硅的理论性能现在几乎已经完全实现,突出了这种材料的一些局限性,包括有限的电压阻断能力、有限的传热能力、有限的效率和不可忽略的传导损耗。与硅相比,碳化硅 (SiC) 和氮化镓 (GaN) 等宽带隙 (WBG) 半导体具有更出色的性能:更高的效率和开关频率、更高的工作温度和更高的工作电压。
新型宽带隙半导体(如碳化硅和氮化镓)在市场上的扩散对传统的老化和测试系统提出了挑战,因为裸片尺寸越来越小,并且组件可以承受更高的电压和温度。
近年来,越来越多的应用程序需要不断增加的功率。例如,在云应用中可以找到对更高功率密度的需求,这导致大型数据中心能够处理大数据分析、人工智能和深度学习等最现代的应用。
碳化硅 (SiC) 和氮化镓 (GaN)等宽带隙材料由于其电气特性已被证明优于硅,因此在电力电子应用中占据领先地位。尽管被广泛接受,但专家们仍在不断检查其真实性。
在本文中,我们分析了一些碳化硅和氮化镓 FET器件的静态和动态行为。公司正在将精力集中在这些类型的组件上,这些组件允许创建高效转换器和逆变器。
数据中心是支持不断增长的数据交换和数据存储需求所必需的,如今已成为全球网络基础设施和计算设施的基本组成部分。2018年数据中心整体用电量已达205TWh,几乎占全球电力供应的1%。
本文追溯了电力电子的历史,可追溯到硅MOSFET仍用于驱动强大的电子负载时。让我们通过描述、应用和模拟重新发现硅的世界,了解电子世界是如何在短短几年内发生巨大变化的,因为新的 SiC 和 GaN MOSFET 的发现和开发。
自从所谓的“电流之战”——在 1880 年代后期,托马斯·爱迪生和尼古拉·特斯拉之间在证明哪种电流(直流或交流)更适合电力传输方面展开了激烈的竞争——没有很多围绕电力的创新。
有时,新 IC 的涌现似乎大多是几乎相同的部件的洪流,尽管具有更多内存、更多 I/O、更快时钟等形式的“更多和更快”属性,或者可能略有增强在规格中。但在电源管理和稳压器 IC 领域,情况并非如此,这是肯定的。
这一代人的研究和开发不断发展。特别是对电力电子产品的需求正在发生巨大变化。技术影响消费者习惯和习俗的速度在过去是无与伦比的,因为它们在技术上远远落后。在过去的两三年里,消费者的能源和充电习惯发生了显着变化,无线技术已经完全融入他们的日常生活。Powercast 帮助客户解决许多远程无线充电挑战,为无线传感器网络、防水设计、可重复使用的智能手环、RFID 标签和许多其他商业和工业设备供电,同时推出旨在为消费电子设备供电的解决方案,并为许多新想法和解决方案申请专利。
全球能源消耗、人口增长、经济增长以及可持续能源资源推动 Maxell 在先进发展中向前发展,并通过新的电池技术实现卓越。Maxell 凭借其新型 CR17500AU 二氧化锰锂电池 (CR Battery) 再次成功开发了下一代电池。
我希望设计人员在这里获得一些见解,这可能有助于防止锂离子电池在未来在所有类型的环境和产品中起火;至少 直到未来 某个 时间 发现 一种 新 的 成分 电池. 重要的是要找到一种灭火剂,它能扑灭大火并与锂离子电池的化学成分、其电极以及电池舱中的任何其他材料发生适当的反应。对三种灭火剂进行了测试、评估和比较,以了解它们在抑制火灾和热失控反应方面的性能。以前的研究表明哈龙是一种灭火剂,但它的臭氧破坏作用使这种解决方案脱离了可行材料的范畴。
三星电子在确定电池缺陷导致火灾时将召回 250 万部 Galaxy Note 7 智能手机。此次召回可能会影响智能手机供应链,但也会引发严重的安全问题。 从历史上看,锂离子电池在笔记本电脑、电动汽车、悬浮滑板和飞机上都出现过问题——最引人注目的是 2013 年的波音 787。
电动和混合动力汽车的设计人员致力于提高能量转换效率,这些设备具有紧凑的封装和高热可靠性电力电子模块的组装,并降低了开关损耗。