全差分放大器 (FDA)是一种多用途的工具,它可以替代balun(或与它一同使用)的同时,并且提供多种优点。与传统的使用单端输出的放大器相比,电路设计人员在使用由FDA实现的全差分信号处理频谱分析仪时,能够增加电路对外部噪声的抗扰度,从而将动态范围加倍,并且减少偶次谐波。
在当今时代,低功耗是每个系统都在朝着的方向发展,这使得工程师将其应用的功耗降至最低是一项关键挑战。低功耗是我们都可以同意的,特别是当它导致更低的电费和更长的手机电池时。
为三相无刷直流 (BLDC) 电机创建驱动系统一直是平衡少数系统要求的任务。效率、可靠性、开发时间、保护、噪音和成本等关注一直是决定零件选择的关键驱动因素。无传感器 BLDC 电机控制器可以帮助我们消除后顾之忧。
第一个运算放大器(op amps) 使用通常称为分离式电源的东西,这意味着放大器的电源在接地周围对称,具有正极性和负极性。由于大多数电源使用变压器来转换 120 V 市电,因此一个简单的中心抽头次级绕组可以轻松接入负电源。
使用热插拔控制器进行设计时,可能会出现很多问题。例如,热插拔可能会在意外的电流值下跳闸,或者电流监视器可能会报告不准确的测量值。因此,依赖热插拔保护的系统的完整性现在可能会受到威胁。通过使用四个焊盘优化检测电阻器布局有助于避免故障并创建稳健的热插拔设计。
TI 的TPS92411提供与流行的开关模式电源 (SMPS) LED 驱动器相当的性能,而设计工作比传统的 AC/DC LED 驱动器要少。在典型的 LED 照明产品中,成本在 TI 的TPS92411适合的驱动电子器件、LED 和机械外壳之间平均分配。
为了使任何行业标准得到广泛采用,两个必需的特性是:互操作性和安全性。 在以太网供电 (PoE) 的情况下,这两种技术的声誉很大程度上取决于电源(供电设备或 PSE 控制器)如何检测符合 IEEE802.3 的负载(受电设备或 PD 控制器)。或者,更准确地说,拒绝无效的。
在真空吸尘器和白色家电等产品的消费世界中,物料清单 (BOM) 极为重要。种类繁多的产品和设计这些产品的公司创造了巨大的竞争——给利润和市场份额带来压力。系统 BOM 是一个简单的地方,可以通过添加或删除功能和/或调整成本来进行优化,从而提高最终产品的竞争力。
Fly-Buck 是一种同步降压转换器,其电感由变压器或耦合电感或 . 次级绕组经过二极管整流,产生一个隔离输出电压(VOUT2),通过变压器的匝数比与初级输出电压(VOUT1)相关。
传统升压 PFC 相比,无桥 PFC 消除了桥式整流器和桥式整流器的功率损耗。对于400W 电源,在 120VAC/60Hz 输入下,桥式整流器的功率损耗高达 6W。由于桥式整流器的功耗,效率降低了1.5% ,这清楚地说明了为什么人们在有高效率要求时会考虑无桥 PFC。
随着硅接近其物理极限,电子制造商正在转向非传统的半导体材料,尤其是宽带隙(WBG)半导体,例如碳化硅(SiC)、氮化镓(GaN)等。因为宽带隙材料具有相对宽的带隙(与常用的硅相比),所以宽带隙器件可以在高电压,高温和高频率下工作。宽带隙器件可以提高能效和延长电池寿命,这有助于推动宽带隙半导体的市场。
LLC 谐振转换器的基本电路如下所述。LLC 谐振转换器一般包含一个带mosfet的控制器、一个谐振网络和一个整流器网络。控制器以50%的占空比交替为两个mosfet提供门信号,随负载变化而改变工作频率,调节输出电压vout,这称为脉冲频率调制(pfm)。谐振网络包括两个谐振电感和一个谐振电容(LLC )。谐振电感 lr、lm 与谐振电容cr 主要作为一个分压器,其阻抗随工作频率而变化(如式1所示),以获得所需的输出电压。
我们是否设计了一个电源,后来才发现我们的布局效率低下?按照这些关键提示创建电源布局并避免调试压力。什么是电源设计的布局?你知道吗?一个完美的电路设计,电源布局显得尤为重要。由于不同的设计方案的出发点不同,而有所差异,但是电源的主要作用不会太大的偏差。
以太网供电PoE (Power over Ethernet) 是指在现有的以太网布线基础架构下, 除了能够保证为基于以太网的终端设备(如IP 电话机、无线局域网接入点A P、安全网络摄像机等) 传输数据信号的同时, 不作任何改动就同时可以为此类设备提供直流供电的能力。PoE 系统主要包括供电设备( Power SourceEquipment, PSE) 和用电设备(Powered Device, PD)两部分, 两者基于IEEE2802.3af 标准确定有关用电设备PD 的连接情况、设备类型、功耗级别等信息联系, 并以这些信息为根据控制供电设备PSE 通过以太网级向用电设备PD 供电。
我介绍了带有标准 PFC 控制器的半无桥 PFC 作为低成本、高效率 PFC 的候选者。由于效率要求不断增长,许多电源制造商开始将注意力转向无桥功率因数校正(PFC)拓扑结构。一般而言,无桥PFC可以通过减少线路电流路径中半导体元器件的数目来降低传导损耗。尽管无桥PFC的概念已经提出了许多年,但因其实施难度和控制复杂程度,阻碍了它成为一种主流拓扑。本文重点介绍具有模拟转换模式 PFC 控制器的半无桥 PFC 的关键设计注意事项。