机器学习将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对机器学习的相关情况以及信息有所认识和了解,详细内容如下。
摘要:随着全社会用电量的逐步增大以及国家双碳战略的逐渐落地,可再生能源的高效利用成为当前发展阶段需要不断探索的问题。由于存在无序性,风力发电难以大规模接入电网系统,若能有效预测风电场的出力并进行统一调度,将大幅提高风力发电利用率。基于此,首先阐述了支持向量机理论,然后针对其解决大样本问题的低效性进行了优化,最后通过实验对比了优化的支持向量机方法在风速预测中的有效性和准确性。
摘要:提出了一种基于烟花算法优化支持向量机的变压器故障诊断模型。标准的支持向量机是二分类,现对其进行非线性处理及多分类变换,使其能适用于变压器故障分类。针对支持向量机参数难以确定的情况,采用烟花算法优化支持向量机,从而搭建烟花算法优化支持向量机的故障诊断模型。实验分析结果表明,所提方法的故障诊断准确率优于其他算法。最后,进一步将算法用于机器学习的其他标准数据集,证明了该算法具有泛化性。
摘 要:文中提出了一种基于支持向量机SVM分类器的直流电弧故障检测方法与若干可用于直流电弧故障检测的时域、频域特征量,特别是基于希尔伯特-黄变换的时频域特征。将特征值导入SVM分类器进行训练后,SVM分类器可检测出直流电弧故障。在SVM分类器的设计和训练过程中,采用遗传算法参数寻优结合K折交叉验证选取最优参数。实验结果表明, SVM分类器的分类准确率高达98%以上。
摘 要:通过对支持向量机、人工神经网络及AdaBoost算法的对比分析,发现支持向量机、人工神经网络算法构造的分类器复杂度高,效率低。而AdaBoost则从弱分类器中逐步推选出强分类器并组成级联分类器,快速将大量的非人脸图像排除掉,从而提高检测速度,满足人脸实时检测应用领域的需求。
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一 种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。 支持向量机(Sup
AI技术发展的三大支柱:“算法+大数据+计算能力”,算法是人工智能发展的核心关键之一,很多技术环节和系统功能的实现都依赖于算法的精准度,算法的优劣直接影响了人工智能的发展方向。那么我们当下感受到
本文结合GDTW核函数和联机手写识别样本的特征向量的特点,引入新的控制参数优化GDTW核函数的计算。实验结果表明,本文提出的优化方法不仅减少了支持向量的数目,而且提高了GDTW-SVM运行效率。
针对高压断路器故障样本难以获取等问题,在研究了其机械特性的基础上,本文提出了一种基于实数阴性选择法(RNS)和支持向量机(SVM)的两级分类器诊断方法。建立分类器的数学模型。通过实数阴性选择算法产生检测器,进行第一次分类,对不属于检测器的数据导入二次分类器,进行二级分类。实验表明,基于实数阴性算法和支持向量机算法相结合的断路器故障诊断算法,对断路器的多种故障都能够有效地分类,提高了断路器故障诊断的准确率和速度。
摘要:组建了沼气检测的实验系统,采用国家标准混合气获取大量的浓度标定数据,分析了目前广泛应用的甲烷浓度预测算法及影响预测结果的因素,讨论了支持向量机在CH4浓度预测中的应用,在此基础上研究了将多通道探测器
摘要:自主障碍检测与回避是无人机低高度飞行时保障其生存性的一项关键技术,有重要的研究意义。通过对机器视觉原理的研究,考虑到支持向量机方法能同时减小匹配难度和计算量,实时性能、泛化性能良好,故采用该方法
支持向量机是一种在统计学习理论的基础上发展而来的机器学习方法[1],通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔最大化,因而
引言 支持向量机是一种在统计学习理论的基础上发展而来的机器学习方法[1],通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔最大
数字仪表识别在工业中应用广泛,但各种仪表差别较大,方法也差别很多。在此提出了一种数字仪表显示值的快速识别方法,该方法首先由计算机自动定位分割图像中的数字区域,并实现了单个数字的切分,然后根据数字特点,创新性地改进了特征提取方法,对每个数字图像提取了一组具有较高区分度,且计算简单的典型特征。最后,基于SVM识别,构造了一种数字识别器,实现了仪表显示值的实时识别。
摘 要:介绍了一种基于支持向量机的解决传感器系统非线性特性问题的新方法。支持向量机是Vapnik教授提出的基于统计学习理论的新一代机器学习技术,它有效地解决了小样本学习问题,因此该方法对样本数量没有特殊的要
针对语音识别这种典型的多类分类问题,提取MFCC参数作为语音特征,采用支持向量机(SVM)作为识别算法,进行非特定人孤立词识别。在给出一种多类分类方法并分析该算法优缺点的基础上,对算法中的所有参数进行测试,选取最佳参数进行实验,识别率达到95%以上。为了满足语音识别系统对实时性和便携性的要求,将该算法在OMAP5912嵌入式系统开发平台上进行实现,与传统的语音识别系统相比,该系统易于使用,语音识别更为快速使捷,并且具有一定的通用性。
针对语音识别这种典型的多类分类问题,提取MFCC参数作为语音特征,采用支持向量机(SVM)作为识别算法,进行非特定人孤立词识别。在给出一种多类分类方法并分析该算法优缺点的基础上,对算法中的所有参数进行测试,选取最佳参数进行实验,识别率达到95%以上。为了满足语音识别系统对实时性和便携性的要求,将该算法在OMAP5912嵌入式系统开发平台上进行实现,与传统的语音识别系统相比,该系统易于使用,语音识别更为快速使捷,并且具有一定的通用性。
支持向量机语音识别算法在OMAP5912上的移植
支持向量机是一种在统计学习理论的基础上发展而来的机器学习方法[1],通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔最大化,
引言 支持向量机是一种在统计学习理论的基础上发展而来的机器学习方法[1],通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔