电源噪声是电子电路设计中一个至关重要的考虑因素,尤其在音频设备和高精度系统中,噪声的存在可能会对电路性能产生显著影响。电源噪声主要来源于误差放大器的输入与输出、参考电压以及斜坡信号。为了有效地控制和降低电源噪声,设计师需要对电源的设计原理和噪声来源有深入的理解,并运用一系列策略和技巧来进行噪声抑制。
电源噪声是设计师和其他参与电子产品生产的人经常遇到的问题,必须提前考虑并制定计划来降低噪声。以下是实现这一目标的一些可行方法。
电压监控器通过监控电源,在电源发生故障时将微控制器置于复位模式,可防止系统出现错误和故障,从而提高基于微控制器系统的可靠性。然而,噪声、电压毛刺和瞬变等电源缺陷都可能会导致误复位问题,从而影响系统行为。本文介绍电压监控器如何解决可能触发误复位的因素,以提高系统性能和可靠性。
大多数电气工程师认为他们对电源有很好的了解,因为它们是相对简单的单功能直流设备,旨在输出受控电压。但是,电源的功能远不止此描述所暗示的。尽管电源的规格对大多数应用都充分描述了其性能,但指定其性能(或任何仪器的性能)的每个可能方面在金钱和时间方面都太昂贵了。
在之前的文章,我们已经了解了 ADC 的电源抑制比 (PSRR) 和前级功率级的 PSRR 要求,以确保噪声最小。在进一步分析电源之前,我们需要了解电源噪声对 ADC 的影响。
开关电源几乎用于所有电子设备中。它们由于尺寸小、成本低和效率高而具有极高的价值。但是,它们最大的缺点就是高开关瞬态导致高输出噪声。这个缺点使它们无法用于以线性稳压器供电为主的高性能模拟电路中。一些低噪声应用可能要求电源输出纹波电压低于输出电压的 0.1%。这些低纹波要求很容易转化为明显大于 60 dB 的滤波器衰减,而单级实际上无法满足。
我最近的一个项目,用到了 DC/DC 转换器,但是输出有个高频尖峰导致系统异常。我首先查看了该部件的原理图位置,所有必要的噪声过滤都已到位。高质量的输入旁路电容正好位于动力传动系中,正确的主波形缓冲器就位,输出具有所需的高频旁路电容。
世界是一个嘈杂的地方——电源也不例外。为了追求更高的效率,电源转换器以越来越快的速度切换会产生意想不到的问题,包括增加系统对瞬态和噪声的敏感性。在选择如何设计电源以及使用哪些组件来设计电源时,考虑到这种敏感性很重要。
世界是一个嘈杂的地方——电源也不例外。为了追求更高的效率,电源转换器以越来越快的速度切换会产生意想不到的问题,包括增加系统对瞬变和噪声的敏感性。在选择如何设计电源以及使用哪些组件进行设计时,考虑这种敏感性非常重要。
从5G到工业应用,随着收集、传送和存储的数据越来越多,也在不断扩大模拟信号处理器件的性能极限,有些甚至达到每秒千兆采样。
在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的低噪声降压转换器吗?
常见的电源噪声有哪些,如何改善呢?开关电源由于结构复杂,元器件众多且电路PCB板线路密集,所以在设计时会由于各种原因导致电源出现噪声情况,我们最常见的产生噪声的原因有以下4种:
在电源管理设计中,是否应该重视电源噪声问题,电源噪声产生的原因是什么?
通常对于开关电源来说,结构还是相对复杂的,元器件众多且电路 PCB 板线路密集,所以在设计时会由于各种原因导致电源出现噪声情况。
来源:sig007,作者:于博士 ▍1、为什么要重视电源噪声问题 芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。随着芯片的集成度越来越高,内部晶体管数 越来越大。芯片的外部引脚数
成本的控制与电子的艺术 我于2010年5月入职泰克科技(中国)有限公司,至今有8年半了。其中,前6年在工程部任职PLE;后面的两年加入了新组建的VAVE部门,任职电子工程师。经过这些年,我对自己的工作岗位以及公司的文化相对有了一些认识。这些认识是我基于工
方法1:使用频域分析FFT分析能更深入的分析信号,如图5和6所示。在广阔的“白”噪声的基础上明显多了2个峰值,49.5MHz和500MHz。 图5.电源噪声的FFT 图6.带有标记的FFTFFT能快速深入的分析噪声的来源。例
1.电压的变化范围过大电网供电不足,供电部门采取降压供电,或地处偏远地带,损耗过多,导致电压偏低。电网用电太少,导致电压偏高电压低负载不能正常工作,电压太高,负载
随着现代科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行中产生的高密度、宽频谱的电磁信号充满整个空间,形成复杂的电磁环境。复杂的电磁环境要
引言如今的电子设计越来越趋向与切换速度加快,封装上会有更多的引脚,信号幅度更小。因此设计人员在从手机到服务器等新的数字电路设计中会更注意电源噪声。实时示波器通常用来测量电源噪声。本文将讲述分析电源噪声