在工厂自动化中使用的可编程逻辑控制器 (PLC)是任何工业自动化设计的基本必需品。简而言之,它们是专门用于控制机器和过程的工业计算机,设计用于在恶劣的工业环境中工作。
许多工业和汽车应用具有广泛变化的输入电压 (V IN ) 轨,并且通常需要降压-升压 DC/DC 转换器来调节输出电压 (V OUT )。降压-升压 DC/DC 转换器可以是级联降压和升压级或单级。级联降压和升压级会导致双重转换,从而导致更高的尺寸、成本和功率损耗。
在这篇文章中,我将介绍用于模拟 Vdd (AVDD) 和数字 Vdd (DVDD) 电源的 DC/DC 转换器。了解 ADC 电源引脚如何对 DC/DC 转换器作出反应至关重要,因为 DC/DC 转换器因其高功率效率而成为大多数(如果不是全部)供电方案的一部分。
对电源电路的需求相互矛盾:更高功率但更冷;效率更高但体积更小;更快的开关,但更低的噪音。再加上在机械和极端温度下更高的可靠性和更长的使用寿命。在 3 月于休斯顿举行的最新应用电力电子会议 (APEC) 上,ADI 公司 (ADI) 展示了与 µModule 稳压器相关的不同演示,展示了这些解决方案的优势,例如更小尺寸、高效散热以及非常低、高频率电磁干扰(电磁干扰)。
我们在实际做项目中,是否曾经遇到过信号链性能不足的情况,却发现问题出在电源上?在这篇文章中,我将描述信号链中由于电源而遇到的一些问题以及如何解决这些问题。
DC/DC 转换器将输入电压源转换为所需的电压电平。当输入电压高于所需的输出电压时,我们需要一个降压转换器。反之,当输入电压低于输出电压时,则需要升压转换器。在输入电压可能高于或低于输出电压的应用中,我们需要的是降压-升压转换器。
想想典型的汽车信息娱乐系统:很多功能和各种子系统都塞进了一个小仪表板。适应小尺寸是一个关键的设计挑战。 许多子系统(如处理器)需要大量电力。由于子系统如此之多,许多子系统共享共同的电压,例如 3.3V 和 1.8V。这些导轨上所需的电流快速增加;有时高达安培的电流。但是小区域需要更高的电流。
MPC12106-54-0750-0220 是一款高效、非隔离式 LLC-DCX 电源模块卡,它具有固定 4:1 变压器匝数比,可在 40V 至 60V 直流原边总线电压下工作。该模块具有10V 至 15V 输出电压 (VOUT),在54V典型输入电压 (VIN) 下可以提供高达 800W 的连续输出功率 (POUT)。该器件还集成了 MPS的一款数字 LLC 控制器 ,MP2981。
服务器、以太网交换机、基站和存储附件盒等云基础设施终端设备对电源的功率密度要求正在增加。作为回应,将集成 MOSFET(金属氧化物半导体场效应晶体管)DC/DC 转换器用于大电流 POL(负载点)轨,传统上由带有外部 MOSFET 的 PWM(脉宽调制)控制器提供服务,这已成为主流. 此外,为高性能处理器和 FPGA 执行高级任务的需求,如自适应电压缩放(基于处理器操作配置文件的动态 Vout 调整以优化功率损耗)也变得很重要。此外,电源设计人员越来越关注消除外部组件、提高可靠性和防止故障发生。
多年来,多相 DC/DC 转换器为服务器、手机、平板电脑和 PC 中的多核处理器供电。今天的现代现场可编程门阵列 (FPGA) 现在集成了多核处理器,例如具有ARM双核 Cortex-A9 处理器的Xilinx Zynq-7000 系列。随着多核处理器扩展到 FPGA、工业和汽车应用,多相 DC/DC 转换器的使用继续增长,因为它能够满足尺寸和热限制。
如果电子设计中的所有设备都使用相同的电源电压运行,会不会容易得多?不幸的是,并非所有功能都具有相同的电源电压要求,因此需要在给定的设备设计中生成多个电源轨。您可能需要多个电源电压,即使对于像高性能数据转换器这样的 IC 也是如此。
在这篇文章分享 Fly-Buck 的软/静音开关特性的细节,这有助于在隔离中实现更高的效率、更低的电磁干扰 (EMI) 和更小的解决方案尺寸DC/DC 偏置应用。
ISL81401 和 ISL81401A 是 4 开关同步降压-升压控制器,两端均具有峰值和平均电流检测和监控功能。ISL81401 是一种双向器件,可以在两个方向上传导电流,而 ISL81401A 是一种单向器件。ISL81401 和 ISL81401A 使用专有的降压-升压控制算法,具有用于升压模式的谷值电流调制和用于降压模式控制的峰值电流调制。
但是效率低且组件温升过高的 DC/DC 转换器可能是一个令人头疼的问题——如果我们必须重新设计电路或修改电路板布局,则更是如此。 为避免此类问题,深入了解转换器的工作模式和功率损耗似乎是明智之举。尽管易于使用的转换器设计和仿真工具提供了一种快速选择组件、绘制效率曲线和估计转换器内功率损耗的方法,但特定功率级的细微差别及其各种工作模式往往仍被误解。识别转换器的模式并剖析预测功率损耗所需的表达式可以让我们全面了解 DC/DC 转换器的电气和热行为。
DC-DC 转换器的用例涵盖广泛的行业,从航空航天和军事应用到商业和工业空间。无论采用何种 DC-DC 转换器的电路拓扑结构,设计人员都必须满足基本参数、认证和一定程度的加固要求,才能满足最严格的医疗要求。 围绕电源或转换器的医疗应用的认证和测试主要由其隔离和泄漏电流定义。这两个参数都与患者在与电源电接触时所经历的保护级别有关。然而,在选择 DC-DC 转换器时,还需要考虑大量其他参数,以确保在设备的整个生命周期内实现最佳性能。本文深入探讨了医疗级 DC-DC 转换器的认证以及选择这些设备时要查看的基本参数。
近年来,移动设备、可穿戴式设备、IoT设备等电池驱动的电子设备已经无所不在。为了提高产品的设计灵活度并满足确保配置新功能所用空间的小型化要求,就要求这些产品上搭载的元器件的功耗要降低到极限,以实现小型化并延长电池使用寿命。 而要延长电池驱动的续航时间,存在着削减设备功耗和电池能量是否能够完全用尽的课题。设备的各种构成元器件均在采用各种方法努力削减功耗,对于直接转换电池能量并供给其他元器件的电源来说,努力进一步降低其功耗是非常重要的。
UCC25600 高性能谐振模式控制器专为使用谐振拓扑的 DC-DC 应用而设计,尤其是 LLC 半桥谐振转换器。这种高度集成的控制器仅在一个 8 引脚封装中实现了频率调制控制和完整的系统功能。改用 UCC25600 将大大简化系统设计和布局,并缩短上市时间,而且价格低于竞争性 16 引脚器件产品。
众所周知,汽车环境的 EMI 问题在最初设计阶段需要仔细注意,以确保一旦系统开发完成能通过 EMI 测试。直到不久前,尚没有一种确定的方法保证,通过恰当地选择电源 IC,就能够轻松解决 EMI 问题。 随着车辆系统的发展,需要更多功率的应用数量不断增加。设计更高功率系统的工程师经常从低压差 (LDO) 稳压器切换到具有更高效率和热性能的 DC/DC 降压转换器。然而,这种转变带来了一些挑战,因为DC/DC降压转换器的电磁干扰 (EMI) 比 LDO 稳压器高得多。
仅额定为 5.5V IN的汽车级降压-升压转换器?使用 12 V 汽车电池,我们无法将降压-升压连接到电池。那么谁需要这样的升降压转换器呢?事实证明,有时一辆车有不止一个电池,而备用电池通常需要一个升降压转换器来为某些电子设备供电。这些电池通常位于电子设备的信息娱乐部分,尤其是在紧急呼叫(eCall) 系统中。
当我开始工作时,我从事的首批电源之一是用于处理器内核的大电流两相降压电源。电流为 40A——当时相当大,而且太高而无法在单级中实现。大多数电源设计人员希望多相应用将高电流轨分成在功耗和尺寸方面更易于管理的级。我们还可以将相同的原理应用于低电流系统,以大大减小尺寸,同时保持多相转换器的其他优点。