1. 多线程编程的挑战 迄今,处理器技术领域中的创新已经使得计算机具备了工作于更高时钟速率的中央处理器单元(CPU)。然而,随着时钟速率逼近其理论上的物理极限,具有多个(而不是单个)处理核的新型
1. 热敏电阻概览 与RTD相似,热敏电阻也是温度敏感的半导体,其阻抗随温度而变化。热敏电阻由以玻璃或环氧珠封装的金属氧化物半导体材料制造而成。而且,热敏电阻的典型标称阻抗值要比RTD高得多,阻抗值
1. 理解隔离 电气意义上的隔离是将暴露于危险电压1的传感器信号与测试系统的低压背板隔开。隔离能够提供许多优势,包括: 保护昂贵设备、用户及数据不受瞬态电压的危及。 改善噪声抑制能力 消除接地环
1. 基本信号分析计算 分析信号的基本计算包括:将双边功率谱转换为单边功率谱、调整频率精度并绘制频谱、使用FFT,以及将功率和振幅转换为对数单位。 功率谱返回一个数组,包含时域信号的双边功
1. 智能设备 对于许多人来说,物联网(IoT)已经成为现实。 当我们通过智能手机控制鸟巢温控器、使用手环记录我们行走的步数以及使用平板电脑观看视频时,我们已经切切实实在享受这些可感应、可连接和可计
1. 引言 当今,测试工程师需要花费大量的开发时间在ADE上。 因此,我们选择的ADE不仅必须直观易懂,而且可以支持多个平台,并可轻松地与驱动程序等测量控制服务集成。 在选择开发测试系统的ADE时,还应
1. 为何需要硬件故障植入? 在许多硬件在环(HIL)试系统中,硬件故障植入用于在电子控制单元(ECU)与系统其他部分之间添加信号故障,进而测试、特性描述或验证ECU在特定失效条件下的性能。 故障植入通常用
1. 进行多线程编程的原因 在程序中使用多线程技术的原因主要有四个。最常见的原因是多个任务进行分割,这些任务中的一个或多个是对时间要求严格的而且易被其他任务的运行所干涉。例如,进行数据采集并显
1. 引言 在设计自动化测试系统时,精度的最大化通常是关键的考虑因素。确定如何最大化精度总是很困难的。绝大多数测试工程师会求助于他们所评估的仪器的技术参数表,寄希望于这些文档能够提供所有的答
1. 模块化仪器——灵活的自定义软件和可扩展硬件 设备的日趋复杂和技术的渐进融合迫使测试系统变得更加灵活。尽管成本的压力要求系统具有更长的生命周期,测试系统仍须适应设备随时间变化而带
1前言 印制电路板(PCB)信号完整性是近年来热议的一个话题,国内已有很多的研究报道对PCB信号完整性的影响因素进行分析,但对信号损耗的测试技术的现状介绍较为少见。 PCB传输线信号损耗来
目前,模块电源的设计日趋规范化,控制电路倾向于采用数字控制方式,非隔离式DC-DC变换器(包括VRM)比隔离式增长速度更快。随着半导体工艺和封装技术的改进,高频软开关技术的大量应用,模块电源的
对学电子的人来说,在电路板上设置测试点(test point)是在自然不过的事了,可是对学机械的人来说,测试点是什么? 基本上设置测试点的目的是为了测试电路板上的零组件有没有符合规格以及焊性
2 微电阻测试的理论研究 本章主要对高精度微电阻测试仪的相关基础理论进行研究。 电阻按其大小可以分为高电阻(100k以上)、中电阻(1到l00k.)和微电阻(1.以下),本课题主要研究微欧姆数
本设计实例的由来是我未能获得那些用于检测电流的新IC。我需要一个容易搭建的分立电路,但仍要有与新IC相同的精度。这个电路似乎就能完成此任务。 Q2是第一个电流放大器,其增益为6.2(如图)。