切割的最终限制导致设计者研究另一种方法,即所谓的自动零点,这是特别可行的集成电路。这是一种动态校正技术,通过在放大器中采样和减去低频误差源来工作。
在我们这个速度越来越快、带宽越宽的信号和频率越来越高的系统的世界里,极低频范围内的信号--降至零赫兹(0赫兹)--要么是微不足道的,要么是不合时宜的。
就像可充电电池一样,超级电容器需要适当的管理才能优化其性能并避免发生事故。在许多方面,两者的监管要求相似,但也存在一些差异。电源管理 IC (PMIC) 供应商认识到这一点,并专门为这种情况开发了设备,例如 Maxim MAX38889 超级电容器备用稳压器(图 1)。
本文前一部分建立了超级电容器的背景,并用简单的术语解释了它们的结构;显然,这是一个具有深厚物理、化学、材料科学考虑和制造问题的组件。第一种广泛使用的标准超级电容器于 20 世纪 70 年代末和 80 年代初进入市场。它们主要用于易失性存储器的内存备份,但由于成本和性能问题,它们并未被大众市场接受。然而,到了 20 世纪 90 年代,超级电容器以适中的价格上市,具有卓越的性能和可靠性,因此开始被常规设计到系统中。相关的维基百科参考资料对其历史进行了相当详细的介绍,同样重要的是,引用了许多信誉良好的来源,包括行业媒体上的新闻和学术期刊上的论文。
许多系统使用可用的线路供电或可更换电池供电。然而,在其他系统中,许多系统需要不断捕获、存储然后输送能量来为系统供电。电量范围从通过物联网和智能电表等远程监控设备的能量收集提供的微量到更大规模的电网级系统。情况是,在能量生成或捕获时立即“实时”利用来自各种来源的能量是一回事。然而,在实际应用中,通常需要一个能量存储子系统,以便将捕获的任何能量存储起来以供日后使用。
任何由主电源供电的电气设备都容易受到电压浪涌的影响。这些完全不可预测的事件可能以多种形式出现:从正常运行期间的适度功率尖峰到外部雷击引起的巨大功率浪涌。为了防止损坏和停机,电气设备和电路需要配备足够的浪涌保护。
电能质量 (PQ) 调查用于数据中心、医院和工业设施,通过确定电能质量问题的根本原因来提高正常运行时间和设备性能。在讨论 PQ 问题时,有三个重要的考虑因素:PQ 问题的类型、PQ 问题的来源以及识别和测量 PQ 问题的工具。
稳定、高质量的电力供应不仅关乎可用性,还关乎电能质量。然而,找出电能质量问题的根本原因(从谐波失真和电压波动到雷击和设备故障的影响)可能是一项复杂的挑战。这些干扰通常肉眼看不见,但可能导致设备故障、运营停机甚至安全隐患。进行彻底的电能质量调查是分析和缓解这些问题的第一步,从而提高电气系统的整体性能。
打开一个普通的 LED 灯泡,你经常会发现一个电解电容器占据了交流线路输入的位置。虽然照明级 LED 的使用寿命通常超过 10,000 小时,但其底座中的电解电容器可能使用寿命不会那么长。造成这种不良后果的原因可能有很多种。
超级电容器可以提供更多功能:更高的功率密度、更大的法拉、更长的循环寿命等等。但它们也需要更复杂的解决方案来实现最佳性能。许多设计考虑因素包括管理超级电容器放电、优化超级电容器充电,以及在超级电容器模块串联配置的情况下,在电池之间提供有效的电压平衡。
本文首先对运算放大器和比较器的操作进行了最高层的比较,然后研究了运算放大器的分类,包括电压、电流、跨电导和跨电阻设计,查看了运算放大器的电压拓扑,考虑了诸如数字比较器、频率比较器、电流比较器和窗口比较器等各种类型的比较器,并通过考虑如何使用运算放大器作为比较器来关闭。
WBG的高频切换带来了与带宽和速度相关的挑战,这些挑战可以通过新的传感技术来解决。此外,氮化镓 (GaN) 和碳化硅 (SiC) 器件对短路条件的耐受性和电流传感要求不同。
测量、工业和光学应用,需要具有可编程调谐、扫描和激励功能的通用频率合成功能
在导通特性方面,IGBT的导通损耗由器件导通时的压降造成,其参数为Vce(sat),随温度变化较小。而SiC MOSFET的导通特性表现得更像一个电阻输出特性,具有更小的导通损耗,特别是在电流较小的情况下2。
在射频信号链中,功率放大器(PA)是位于发射机信号链电路和天线之间的有源元件, 图1 .它通常是一个单独的离散组件,它的要求和参数不同于传输链和接收电路的要求和参数。这个常见问题将研究巴勒斯坦权力机构的作用及其特征。