第一部分 其中常见问题包括射频功率放大器(PA)的基本作用和功能。这一部分探讨了在考虑可能的PA设备时需要考虑的一些因素。这并不是一个详细的分析,说明许多参数的特点,包括许多独特的PA功能。
许多天线在机械上既简单又复杂。机械天线通常只有一个或两个组件,一个介质层(可以是整个天线)和一个导电层。本常见问题集首先简要回顾了介电材料及其对天线性能的重要性。然后,本文探讨了与5G手机的先进天线、灵活电子设备的天线有关的发展,以及在可穿戴天线中使用碳纳米天线的可能性。
缓冲器和驱动器同时提供输入和输出之间的阻抗变换。当看到常见类型的缓冲器和驱动器,例如电压和电流缓冲器、时钟缓冲器、直线驱动器和门驱动器时,这些差异开始出现。基本缓冲区和驱动程序有一个输入和一个输出,但还有一些可以有一个输入和多个输出或一个输出有多个输入。
效率和功率密度都是电源转换器设计中的重要因素。每个造成能量损失的因素都会产生热量,而这些热量需要通过昂贵且耗电的冷却系统来去除。软开关和碳化硅 (SiC) 技术的结合可以提高开关频率,从而可以减小临时存储能量的无源元件的尺寸和数量,并平滑开关模式转换器的输出。SiC 还为产生更少热量并利用更小散热器的转换器提供了基础。
影响范围和性能,天线选择和放置是关键的设计考虑因素,在物联网设备制造商。本文综述了最广泛使用的多用途天线,并讨论了其应用特定的功能。它还强调了最佳设计和放置战略,为每种天线类型提供了详细的指导方针。
在 第一部分中 在这个系列中,我们讨论了1-db压缩点作为设备线性度的一个优点。在 第2部分里面 ,我们检查了一个增加两个频率的基本输入信号的电路。 f 1 = 2 GHz and f 2 =2.5千兆赫。由于非线性,电路产生干扰,主要形式为低面和高面三阶互相调制产品2 f 1 – f 2 和2 f 2 – f 1 , respectively ( 图1)。三阶拦截点,简称IP3或toi,表示设备如何很好地限制这种干扰。
在 第一部分中 ,我们研究了1db压缩点,它是射频功率放大器等设备的优点。一个附加的规范,三阶截取点,简称IP3或TEI,特别适用于具有多个输入频率的电路。例如,假设放大器和两个频率为 f 1 = 2 GHz and f 2 =2.5千兆赫。由于非线性,该电路产生具有各种干扰频率的输出频谱,如 图1 .在一个 先前关于互调失真的帖子 ,我们注意到低及高侧三阶互调产品2 f 1 – f 2 和2 f 2 – f 1 因为它们接近基本面,难以过滤,所以可能会特别麻烦。选择一个具有高IP3评级的放大器或其他设备可以最小化这些产品的水平。
UPS的应用场景日趋多样化,每个场景都有其独特的需求,对应不同的方案。本文将聚焦UPS设计方案展开讲述。
A: 你会发现几个。首先,在 图1 "蓝线"代表电路的理想线性响应,而"红线"则代表被测量的响应。我们可以绘制平行于约束实际响应的线性响应的线(图中的虚线),然后计算非线性作为一个函数的全面输出。在这个夸张的表示中,非线性度为+10%.对于在线性区域中工作的高质量的OP放大器,非线性度不是以百分比为单位的,而是以百万分之一(PPM)为单位的。
宽带隙 (WBG) 半导体器件,例如碳化硅 (SiC) 场效应晶体管 (FET),以其最小的静态和动态损耗而闻名。除了这些特性之外,该技术还可以承受高脉冲电流,在固态断路器等应用中特别有优势。本文深入探讨了 SiC FET 的特性,并与传统硅解决方案进行了比较分析。
无线电通信系统稳步提高数据速率和总体系统性能。随着性能的提高,对电力消耗的压力越来越大。最近的一份行业报告[参考1]得出结论,典型的5G基站的耗电量为12千瓦,而LTE基站的耗电量为7千瓦。大约有5个烤面包机的额外能量被使用。(典型的2片烤面包机消耗约1000瓦。)
由于电压是看不见的,所以无法通过观察电路来判断电路中流过的电压。但是,电子设备中的每个电路都有其运行所需的预定电压,过高的电压可能会导致设备损坏或人身伤害。同时
在这一系列中,我们回顾了在微软的EXECL中实现的快速傅立叶变换(FFT),并研究了窗口功能。在最后一部分,我们将讨论相位测量,但首先,让我们回顾一下 第三部分 ,我们通过研究窗口不起作用的信号得出结论。
我们得出结论 第2部分 本系列中的一个,以我们的样本大小,查看39.1-赫兹和38.12-赫兹余弦波的快速傅立叶变换(FFSTS)。 N =512及样本间隔 新一代 = 1 ms ( 图1 ).
由于工业电气系统经常遇到电压波动,谐波失真,噪声以及短期或长期停电,因此必须通过为应用指定不间断电源(UPS)确保最大的正常运行时间。 为控制系统指定最佳的UPS是很具成本效益的投资之一。