• 使用逐周期电流限制控制保护我们的 BLDC 电机驱动器 – 第 2 部分

    如果我们错过 了本系列的第 1 部分 ,我将讨论 BLDC 电机驱动器中逐周期过流保护的必要性以及如何检测电机绕组电流。在第 2 部分中,我将讨论如何通过检测直流总线电流和使用超低功耗微控制器来实现逐周期过流保护。 TI 的超低功耗 MSP430F5132 微控制器有助于逐周期控制电机绕组电流,无需任何软件中断干预。 我们可以将高带宽精密 OPA374 配置为单端差分放大器,以放大连接在直流总线返回路径中的检测电阻 R SENSE上的压降。

  • 使用逐周期电流限制控制保护我们的 BLDC 电机驱动器 – 第 1 部分

    无刷直流 (BLDC) 电机因其高效率、高扭矩重量比、低维护和长寿命而广受欢迎。三相无刷直流电机由三相绕线定子和带有永磁体的转子组成。BLDC 电机中没有电刷,因此需要使用电子驱动器来正确换向电机绕组中的电流。

  • 使用 Fly-Buck 转换器简化更高电流的分离轨设计

    一直以来,TI 建议使用Fly-Buck ™ 拓扑(或隔离降压拓扑)来简化工业和通信应用的隔离偏置设计。Fly-Buck 设计将耦合绕组添加到电感器,以提供单个或隔离的偏置电源,而无需光耦合器。LM5017系列使用简单,降低了物料清单 (BOM) 成本并提高了性能,这就是它在过去几年中广受欢迎的原因。

  • 使用 DCDC 转换器为 ADC 供电

    在这篇文章中,我将介绍用于模拟 Vdd (AVDD) 和数字 Vdd (DVDD) 电源的 DC/DC 转换器。了解 ADC 电源引脚如何对 DC/DC 转换器作出反应至关重要,因为 DC/DC 转换器因其高功率效率而成为大多数(如果不是全部)供电方案的一部分。

    线性电源
    2022-06-27
    ADC DCDC
  • 如何实现零空载功率

    我们都做过,把手机充电器留在家里或办公桌上,但手机本身就在我们的口袋或手中。没什么大不了的,对吧?实际上,这是一件大事。当我们意识到有数百万个这样的充电器时,基本上什么都不做的未使用充电器消耗的功率相当可观,消耗了大约 10% 的国内功率消耗。

  • Renesas瑞萨单节电池充电方案ISL9203A

    ISL9203A 是一款集成式单节锂离子或锂聚合物电池充电器,能够在低至 2. 4V 的输入电压下工作。该充电器设计用于各种类型的交流适配器

  • 为什么值得关注 ADC 的接地

    运行模数转换器 (ADC) 设备有什么大不了的?将传感器输出连接到 ADC 输入并开始读取读数。正确的?毕竟,数字信号提供了强大的噪声抑制能力,因此电平之间的切换很牢固,并且有足够的内置余量。尽管如此,模拟信号更容易受到噪声的影响。

  • 高性能直流电机驱动器

    电机控制长期以来一直处于研发活动的前沿,旨在寻找有效和高效的微电子解决方案。电机控制器的目的是能够手动或自动作用于电机(启停、提前反转、速度、扭转和电压过载保护)。用于电机控制的集成电路 (IC) 代表了创新的重要时刻,汽车行业和工业自动化无疑是最具代表性的行业。

  • 驱动和保护电源开关的高级解决方案

    如今,新的功率开关技术正被广泛应用于要求高功率密度、高开关频率和小尺寸是关键要求的苛刻应用中。这些新开关器件发挥作用的三个关键应用

  • 驱动先进性能:电动汽车解决方案电动汽车痛点

    电动汽车的概念对今天的消费者来说并不新鲜。近两个世纪以来,电动汽车以多种形式存在。然而,在过去的几十年里,随着技术的进步和特斯拉等公司取得成功——以及我们努力应对气候变化、空气污染和化石燃料供应不断减少的影响——越来越多的消费者正在考虑使用电动汽车比以往任何时候都。

  • 驱动先进性能:电动汽车解决方案电源转换系统内部

    显着提高范围、性能和成本基本上归结为功率器件的局限性。下面说明了 EV 和主要电源转换系统组件的基本操作。本次讨论最重要的部分是: · 车载充电器,允许连接到外部 AC/DC 充电站 · DC/DC 转换器,将高压电池直流电转换为低压直流电,用于内部电子设备 · 主逆变器,将高压电池直流电转换为为电机供电的三相交流电

  • 如何使用外部模拟驱动器协助 ADC

    我一直有个问题,使用模数转换器 (ADC) 是否像将传感器输出连接到其模拟输入并开始读取读数一样简单?精明的读者看到我只回答了这个问题的一部分——地面通常是 ADC 读数失控的罪魁祸首,但它不是唯一的。

  • 如何在微控制器上运行片上 AD 转换器

    我们已经花费了大量篇幅讨论如何添加速度更快、精度更高的 A/D 转换器。有些应用程序需要更高的功能。但大多数制造商已经在他们选择的模块上安装了一个“免费”的 A/D 转换器——集成在微控制器或片上系统 (SoC) 中。这些集成转换器各不相同。让我们不关注详细的规格,而是看看制造商可能获得的一些功能以及如何使用它们。

  • 使用新型预驱动器和 MOSFET 的汽车功率负载控制

    今天的汽车配备了种类繁多的电子配件和电子安全辅助装置,使车辆更具吸引力、更安全和更易于使用。此外,传统的液压系统(如动力转向和自动变速箱)正在被电动等效系统取代,以帮助减轻整体重量并提高燃油经济性。

  • 说明 SiC MOSFET 在电力电子中的优势

    电力设计是由市场需求驱动的,以提高效率和生产力,同时符合法规要求。最重要的最终用户需求几乎总是更小、更轻、更高效的系统,这得益于功率半导体设计的重大创新。在硅 MOSFET 和 IGBT 长期以来一直在功率半导体中占据主导地位的地方,宽带隙 (WBG) 技术,尤其是碳化硅 (SiC) 技术的最新进展正在为电力电子系统的设计人员带来额外的好处,提高效率和更高的电压能力,从而减少形式因素。

发布文章