• 如何加强 PMBus 输出电流测量精度

    企业服务器和交换机、存储连接网络和基站越来越多地使用带有 PMBus 的电源来轻松配置、控制和监控关键电压轨,例如大电流 ASIC、DSP、FPGA 和 DDR 内存内核,而无需软件编程。

  • 使用钳位二极管保护我们的电源电路

    客户经常问这些问题——而且有充分的理由。许多标准逻辑数据表没有明确指定输入高于 V CC或低于接地 (GND) 的条件。在这些边缘电压下,器件本身在数据表中几乎没有(如果有的话)性能特征。

  • 如何更有效地旋转步进电机,第 1 部分

    在实际应用中,我们喜欢步进电机,这已不是什么秘密。我们非常喜欢它们,因此我们致力于开发集成电路 (IC) 和开发工具,使步进电机更易于驱动。我们有小型 BoosterPacks来鼓励原型设计;创新产品功能,如自适应衰减,以消除电机调谐;以及具有集成索引器、集成或外部功率级以及全方位保护功能的大量驱动器 IC 。

  • 如何更有效地旋转步进电机 , 第 2 部分

    · 设计步进电机。 · 步进电机可能很耗电。 · 反电动势 (EMF) 将指示步进电机负载。

  • 了解无刷直流电机系统

    快速——三种电机类型是什么?我听到的最常见的答案是“有刷直流电机、步进电机和无刷直流电机,”这基本上是对这个问题的下意识反应。

  • 使用TI的InstaSPIN FOC,在电机启动期间如何产生足够的扭矩

    TI的InstaSPIN FOC 同时自带电机参数自学习功能,通过自学习功能,可以识别电机的电阻,电感和反电势参数, 从而自动生成速度环和电流环控制的PID,因此大大简化了客户匹配电机的过程,减少了客户的开发时间。同时降低了客户对于FOC电机控制的经验要求,因此深受广大客户的欢迎。从而广泛应用于白电空调压缩机,冰箱压缩机,洗衣机电机,无人机动力电机,新能源汽车空调压缩机,各种风机,水泵,油泵等控制场合。接下来,我将讨论InstaSPIN FOC在启动期间产生足够的扭矩以及如何保持对齐以最大化扭矩。

  • 双运算放大器在电机驱动应用中的工作原理

    在这篇文章中,我们将讨论可以在电机驱动系统中使用ALM2402 双运算放大器的各种应用。

  • 分立 SBC:适用于任何应用的通用且可扩展的解决方案

    系统基础芯片或 SBC 是一种集成电路 (IC),它结合了系统的许多典型构建块,包括收发器、线性稳压器和开关稳压器。虽然这些集成设备可以在许多应用中提供尺寸和成本节约,但它们并非在所有情况下都适用。

  • 你在感应什么?重新思考系统效率和可靠性

    如果你问工程师他们是否想要一个高效可靠的系统,答案当然是肯定的。效率和可靠性的定义是什么——以及最终实现系统所需的条件——并不容易回答。

  • 为老化的汽车铅酸电池充电

    一项小研究表明,汽车铅酸电池不同于深循环或固定电池。汽车电池旨在最大限度地提高启动电流容量,并且对深度放电或浮充(也称为第 3 阶段充电循环)反应不佳。起动电池的极板结构使表面积最大化,并且电解液比重 (SG) 高于其他电池,以提供高启动电流。与固定电池一样,允许保持在深度放电状态的汽车电池会经历永久硫酸化,其中在放电期间产生的小硫酸铅晶体转化为稳定的晶体形式并沉积在负极板上。浮充另一方面,汽车电池很容易引起过饱和,导致正极板氧化,从而缩短电池寿命。因此,充电电压和充电周期非常关键,并且对于汽车和深周期类型是不同的;此外,充电电压应随环境温度以高于 25ºC 每摄氏度 3mV 的速率降低。

  • 用于太阳能存储解决方案的电池管理系统

    电池和太阳能光伏电池的价格正在下降。风能和太阳能等可再生能源受天气、位置和时间的影响;这会导致能源供应不一致。采用储能系统 (ESS) 将有助于平滑这些变化,并为以后需要时储存能量。

  • 使用自动闭锁电路节省电池电能

    尽管可充电电池具有许多优点,但如果电量完全耗尽,它们可能会遭受损坏并缩短使用寿命。当电池电压低于预设限值时,我们设计的电路会关闭电池供电的设备——在本例中,LED 手电筒从 NiMH(镍氢)电池接收电力。虽然适用于 LED 手电筒,但该电路可适用于任何电池供电的应用。在不确保用户将电池取出充电的情况下,该电路会在电池电压低于可用极限时锁定手电筒,从而强烈提示可能是时候充电了。

  • CAN 总线信号是什么样的?

    CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低功耗、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。

  • 了解 CAN 总线驱动程序的内部工作原理以及如何调试我们的系统

    CAN总线首先在汽车上得到了广泛应用,之后又在工业生产领域有了很大发展,那么面对不同的应用场景和工况,如何选择合适的网络拓扑结构慢慢成为一个让人头疼的问题。在这篇文章中,我将重点介绍用于驱动这些总线电压的 CAN 驱动器输出级的典型拓扑。对于曾经在 CAN 网络中遇到过发射问题或输出差分电压问题的任何人,本博客描述了驱动器的工作原理以及我们可以在数据表中查看哪些电气参数来识别良好的收发器。我相信对 CAN 驱动程序的基本了解也有助于调试出现的 CAN 问题。

  • 为什么 CAN 收发器中的终端网络如此重要?

    在这篇文章中,我将构建典型的 CAN 驱动器拓扑结构,并说明为什么端接对于与 CAN 的正确通信如此重要。 国际标准化组织 (ISO) 11898 CAN 标准规定,CAN 网络的物理线为特性阻抗为 120Ω 的单双绞线电缆。此外,标准规定总线的两端必须用等于电缆特性阻抗的电阻器端接。

发布文章