12月12日消息,2023年度中国医学人工智能代表性算法评选结果近日出炉,由浙江大学医学院附属第一医院、阿里巴巴达摩院(湖畔实验室)联合提出的“人体正常器官的分层分割模型”入选其中。该算法可高效分割42个器官,让放疗规划更精准,病人更受益,有效降低放疗对身体的损伤,并帮助医生减轻了90%的靶区勾画工作量。
针对目前道路表面裂缝缺陷检测方法普遍存在识别率低、实时性差以及多尺度特征下检测效果不好等问题,提出 一种改进的YOLOv5s算法模型。该算法引入simAM三维带权注意力机制且不引入额外参数,在模型中融入加权双向特征金字塔进 行多尺度特征融合;同时改进预测框损失函数,使得损失函数收敛更快。经过对比实验,改进后模型的裂缝检测均值平均精度提高了2.2%,准确率为90. 5%,表明了模型的有效性。
“生日快乐!成都 都成!” 7月10日,欢声笑语回荡在英特尔成都基地。当天,英特尔CEO帕特·基辛格等一行高管也来到这里,共同庆祝英特尔扎根蓉城二十周年。
2023年7月11日,北京 —— 今日,英特尔AI产品战略暨Gaudi2新品发布会在京举行。会上,英特尔正式于中国市场推出第二代Gaudi深度学习加速器——Habana® Gaudi®2。作为英特尔从云到端产品组合的重要组成,Gaudi2致力于以领先的性价比优势,加速AI训练及推理,为中国用户提供更高的深度学习性能和效率,从而成为大规模部署AI的更优解。
摘要:电力电缆在工作中由于受到电、热、机械等复杂应力的作用会产生局部放电现象,严重时还会威胁到输电线路的可靠性和电网的安全性。对电缆中局部放电信号的识别和诊断是电缆智能运维的重要手段,鉴于此,介绍了如何使用样本清洗、样本查重等筛选手段和噪声叠加、稀疏处理等数据增强方法对局部放电信号的样本进行处理,从而为基于深度学习的局部放电智能诊断系统提供可靠的基础样本数据,提高局放诊断的准确率。
近来,ChatGPT成为社会各界关注的焦点。从技术领域看,ChatGPT的爆发是深度学习领域演进、发展和突破的结果,其背后代表着Transformer结构下的大模型技术的飞速进展。因此,如何在端侧、边缘侧高效部署Transformer也成为用户选择平台的核心考量。
在亚马逊,有这样一支负责搜索的团队正在利用深度学习技术帮助公司内各个团队从数据中获取智能。它就是M5搜索团队,正在构建大模型以支持亚马逊的机器学习(ML)应用程序。借助亚马逊云科技的服务,M5搜索团队能够运行数百亿参数模型的深度学习实验。M5搜索团队使用多种亚马逊云科技服务构建、训练和部署多模态的大型机器学习模型。如今,M5搜索团队整合了数据,简化了创建大模型的过程,亚马逊各个团队都可以使用这些模型,为他们的机器学习应用程序带来深度学习的强大能力。
深度学习(DL)的创新,特别是大语言模型(LLM)的快速发展,已经席卷了整个行业。深度学习模型的参数已从数百万增加到数十亿,为我们呈现了越来越多激动人心的新能力。它们正在催生新的应用,如生成式AI或医疗保健和生命科学的高级研究。亚马逊云科技一直在芯片、服务器、数据中心互连和软件服务等多个方面创新,加速深度学习工作负载的大规模应用。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
“寒武纪”是中国科学院计算技术研究所发布的全球首个能够“深度学习”的“神经网络”处理器芯片。寒武纪,即深度学习处理器,它是给电脑创造出模仿人类大脑多层大规模人工神经网络的芯片。在深度学习处理器的运行当中,计算系统的运算能力提升是决定深度学习处理效率的关键。深度学习是指多层的人工神经网络和训练它的方法。通俗讲就是指计算机通过深度神经网络,模拟人脑的机制来学习、判断、决策。
机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。
摘要:机场道面表观缺陷情况是道面评价的重要指标之一,直接影响着航空器起降安全,目前机场主要通过人工巡检的方式定期检查记录机场道面表观缺陷,效率低,工作量大,而现有的自动化检测算法存在准确度低、推理速度慢、算力要求高等问题。针对这些问题,结合深度学习的目标检测技术进行研究,提出一种快速高效的机场道面表观缺陷检测方法,在保证准确性的前提下,计算平均仅耗时22ms,对实现机场道面自动化高效检测,提高机场运行效率有重要意义。
为增进大家对人工智能的认识,本文将对人工智能的优势、人工智能的技术予以介绍。
人工智能如今早已经浸入生活的方方面面。从能够战胜人类顶尖围棋选手的AlphaGo,到能够语音控制家电的智能音箱,人工智能使成千上万的行业和场景发生了前所未有的变化。
想要了解“深度学习+”,我们必须回到深度学习技术在中国落地生根的历史当中。2006年,辛顿等人意外发现了多层神经网络带来的全新可能性,就此将上世纪80年代已经产生的机器学习技术,推动到了深度学习的新阶段,而深度学习技术在一系列AI测试任务上的优异表现,也重新燃起了人们对AI的期待。客观来说,经历了两次寒冬的AI技术,能够再次复兴的核心要素就是深度学习技术的出现。
深度学习是近10年机器学习领域发展最快的一个分支,由于其重要性,三位教授(Geoffrey Hinton、Yann Lecun、Yoshua Bengio)因此同获图灵奖。深度学习模型的发展可以追溯到1958年的感知机(Perceptron)。1943年神经网络就已经出现雏形(源自NeuroScience),1958年研究认知的心理学家Frank发明了感知机,当时掀起一股热潮。后来Marvin Minsky(人工智能大师)和Seymour Papert发现感知机的缺陷:不能处理异或回路等非线性问题,以及当时存在计算能力不足以处理大型神经网络的问题。于是整个神经网络的研究进入停滞期。
得克萨斯 A&M 大学、Rain Neuromorphics 和桑迪亚国家实验室的研究人员最近设计了一种新系统,可以更有效地更大规模地训练深度学习模型。该系统在Nature Electronics上发表的一篇论文中介绍,它依赖于使用新的训练算法和忆阻器交叉开关硬件,可以同时执行多项操作。
在这篇文章中,小编将对机器学习的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。
一直以来,机器学习都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来机器学习的相关介绍,详细内容请看下文。
在下述的内容中,小编将会对机器学习的相关消息予以报道,如果机器学习是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。