1 引言 测量仪器、数据采集系统、伺服系统以及机器人等重要单元或关键部件需在非正常掉电时进行状态记录和必要的系统配置,使用电池往往由于长期浮充致使寿命减少,且需定期更换。超级电容器(Supercapacitor)兼
天然资源的枯竭、空气污染、交通堵塞和矿物燃料价格的上涨等等问题,迫使社会和个人寻求替代运输工具。这当中就有用于公交车和卡车的混合电力、氢气和基于燃料电池的动力系统,例如ISE(San Diego, CA)从1996年以来所
超级电容具有高功率密度和能量密度、使用寿命很长、尺寸紧凑等特性,当它与其它新兴的电池技术结合使用时,可满足高性能电源应用的需求。本文对这些新的能量存储方案及其使用方式进行了分析。如今性能和可靠性是每个
什么是超级电容超级电容器(super capacitor),又叫双电层电容器(Electrical Double—Layer Capacitor)、黄金电容、法拉电容。是介于传统电容器和充电电池之间的一种新型储能元件。其容量可达几百至上万法。功率
什么是超级电容超级电容器(super capacitor),又叫双电层电容器(Electrical Double—Layer Capacitor)、黄金电容、法拉电容。是介于传统电容器和充电电池之间的一种新型储能元件。其容量可达几百至上万法。功率
摘要:由于超级电容器单体性能参数的离散性,当多个单体串联组成电容器组时,在充放电过程中容易造成过充或过放现象,严重危害超级电容器的使用寿命。文中提出以FPGA为检测、控制单元,对电容进行有效地充放电控制,
摘要:由于超级电容器单体性能参数的离散性,当多个单体串联组成电容器组时,在充放电过程中容易造成过充或过放现象,严重危害超级电容器的使用寿命。文中提出以FPGA为检测、控制单元,对电容进行有效地充放电控制,
崇明第一条超级电容城市公交示范线“城桥1号”近日开始运行,标志着崇明生态岛新能源公共交通的推广应用拉开序幕。乍一看,超级电容公交车和普通公交车没有任何区别,仔细观察你会发现,电容车底部装进了容量巨大的超
中心议题: 智能水表发展中的问题 超级电容的特性 解决方案: 超级电容代替锂电池应用于智能水表 (一) 智能水表简介 传统的智能水表,在控制水阀开启和关断时,普遍采用的方法是内装锂电池。锂电池的优
Ioxus Inc.日前发布了一种重大的电池结构改良,将有助于缩减半导体和电池技术之间的差距──传统电池技术由于必须依赖无法改变的化学反应,成长脚步一直落后于半导体。与采用主电池储能的方式不同,他们仅根据个别设
Ioxus Inc.日前发布了一种重大的电池结构改良,将有助于缩减半导体和电池技术之间的差距──传统电池技术由于必须依赖无法改变的化学反应,成长脚步一直落后于半导体。与采用主电池储能的方式不同,他们仅根据个别设
近年来,由于新能源行业尤其是新能源汽车行业的飞速发展,作为当今最先进的储能设备。超级电容器可以直接充电,再直接放电,能量形式没有转变,能量也没有损失,充放电效率高达98%;经济价值大,成本只有铅酸电池的7
近年来,由于新能源行业尤其是新能源汽车行业的飞速发展,作为当今最先进的储能设备。超级电容器可以直接充电,再直接放电,能量形式没有转变,能量也没有损失,充放电效率高达98%;经济价值大,成本只有铅酸电池的7
对于中国电动车当下发展现状的混乱、停滞以及由此产生的对它的不利言论,上海交通大学机械与动力工程学院教授,博士生导师、上海交通大学校长助理、汽车工程研究院院长许敏忧心忡忡。 2011年夏天,他在上海接受
0 引言 近年来随着能源短缺问题日益突出, 太阳能、风能等新型无污染的替代能源应用日益受到重视。独立型太阳能照明系统因其结构简单、无需铺设电缆, 且搭建、携带较为方便等特点在照明领域有着广泛应用前景。
上周,市场传出新消息,美国Nanotek公司新发明石墨烯电池,充满电只需1分钟!这正可谓是一石激起千层浪,使得石墨烯概念借东风卷土重来,业内再次将目光锁定在石墨烯技术进展和应用上。金路集团涨停,方大炭素、中钢
电动车有了石墨烯表面锂离子交换电池一种看起来怎么也和电池搭不上界的物质,成了突破电池技术瓶颈的关键。美国俄亥俄州Nanotek仪器公司的研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出
设计了一种应用于电动汽车的新型能量管理系统,分析了基于超级电容的双向DC-DC变换器原理。在分析电动汽车运行特性的基础上设计了该能量管理系统的控制策略。系统在电机控制部分采用相电流闭环控制,在双向DC-DC变换器部分采用电压、电流双闭环控制。
设计了一种应用于电动汽车的新型能量管理系统,分析了基于超级电容的双向DC-DC变换器原理。在分析电动汽车运行特性的基础上设计了该能量管理系统的控制策略。系统在电机控制部分采用相电流闭环控制,在双向DC-DC变换器部分采用电压、电流双闭环控制。
设计了一种应用于电动汽车的新型能量管理系统,分析了基于超级电容的双向DC-DC变换器原理。在分析电动汽车运行特性的基础上设计了该能量管理系统的控制策略。系统在电机控制部分采用相电流闭环控制,在双向DC-DC变换器部分采用电压、电流双闭环控制。