由于锂电池的体积密度、能量密度高,并有高达4.2V的单节电池电压,因此在手机、PDA和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路
Nawa Technologies官方表示,在融入碳纳米超级电容器后锂电池充电速度有明显提升,重量也有明显下降,在应用于电动汽车上能够增加续航里程和性能输出。这家位于法国马赛的创业公司,正在研发新型电池,在问世后相信会给传统电动汽车行业带来颠覆性改变。
如何正确处置废电池,许多市民仍是一头雾水。记者调查发现,与市民生活相关的每一种电池都有不同的回收利用方式。虽然对铅酸电池的回收处理已经很成熟,但在北京只有1%的废铅酸电池进入了正规回收渠道;即将进入爆发增长期的锂电池仍面临无处回收的尴尬;大量干电池由于回收成本过高正随着生活垃圾填埋或焚烧。
常见的可充电电池包括镍氢电池、镍镉电池、锂电池和聚合物电池等。其中,锂电池以其高的能量密度、稳定的放电特性、无记忆效应和使用寿命长等优点得到广泛的应用。目前
相信大家肯定都遇到过这种情况:刚冲完电的手机电量显示满格,但是待机一会,就电量不足,甚至是一通电话就自动关机。再充电很快就显示充满,周而复始。总给我们带来很
电池电压不是4.2V电池存在反接情况 如何设计可以防电池反接的可调电压锂电池充电器
电池系统是电动车的动力来源,是整个产业链中最核心的系统成分。以特斯拉Model S为例,其电池系统(锂电池+电池管理系统)成本占比为56%,而传统的轿车发动机占比大约只有15%-25%。到了2016年,电池系统的成本占比有所下降,且成本结构也有所变化,单体电池的成本占到了83%,电池管理系统的成本占比约为13%,剩余4%为电池冷却系统。
韩国电池企业在中国新能源汽车市场失去了高速发展的三年,如今正厉兵秣马,趁着当前中韩关系保持良好发展态势,韩企正准备继续在中国加大投资增加产能。那么韩国电池企业进入中国市场应该如何看待呢?韩国电池的引入
有一篇文章叫《手机充电的正确打开方式》,众多媒体转载,看到这个题目的时候,我扪心自问,从业十几年,接触手机电池、工业电池等众多锂电池,有正确充电方式么?好像没有,
在储能电池的更新换代中,锂离子电池由于其自身所具备的各种优点,已成为重点研究领域,并在大量的储能项目中获得了实际应用,取得了一定的成效。
锂离子电池在使用的过程中,能够进行二次充电,属于一种二次可充电电池,主要工作原理为锂离子在正负极之间的反复移动,无论电池的形状如何,其主要组成部分都为电解液、正极片、负极片以及隔膜。
贸易战持续发酵,美国剑指“中国制造2025”,“中兴事件”引发业界强烈震动。而近日,矛头似乎又指向全球通信设备巨头华为,再次触动了中国制造业,也戳中中国缺乏核心技术的痛点。在紧迫的贸易
目前,锂离子电池广泛应用于各种便携式电子设备、电动汽车中,但随着这些设备的不断发展,锂离子电池渐渐不能满足社会的发展需要。为了进一步拓展锂离子电池的应用前景,各种体系的电池得到了研究人员的关注。其中,锂硫电池日益受到人们的重视。
与软包和方形锂电池相比,18650圆柱形锂电池,是商业化最早,生产自动化程度最高,当前成本最低的一种动力电池。又有Tesla多年夹持,基本保持着与软包和方形电池三分天下的局面。 从特斯拉宣布Model 3采用21700以后,圆柱电池家族也多出了一个明星成员。本文一起来看看圆柱电池相关的几个技术点。下文中不特殊声明的,圆柱电池就特指18650 。
现如今的手机尽管性能先进,但是耗电量却十分大,人们外出的时候必须要随身携带充电设备,很是不方便。不过,未来这种情况很有可能会得到改变,近日根据媒体的报道,国外专家正在寻求一种方法,通过这种方法能够将人体的能量转化为电能,以此来为穿戴设备供电。
一、锂离子电池组成结构锂离子电池是一种二次化学电池(充电化学电池),其正负极由两种不同的物质构成,可供锂离子可逆地嵌入和脱出。充电过程中,锂离子从正极脱出,经过电解质嵌入负极的晶格之中,从而正极处于高电位的贫锂状态,负极则处于低电位的富锂状态;放电时则相反,具有电压高、比能量高、比功率高、循环寿命长、自放电小、无记忆效应、对环境友好等特点,是当前最符合新能源应用发展趋势的储能技术。
日本朋友来家里做客时,时常谈到中国汽车业的未来,特别是电动汽车近年来在中国的大发展。
直到目前为止,还没有一款完全理想的、适合于锂电池的电解质。如今最常用的还是有机电解液,因为其具有高的离子电导率和较宽的温度使用范围。 锂电池技术正在新能源的道路上飞速奔跑,现代社会对于锂电池的比能量、安全性有了更加广泛的关注。对于锂电池而言,正负极材料、电解质的革新是提高其性能的根本源泉。
近年来,锂离子电池行业呈现稳步快速增长的态势,其中宁德锂电新能源产业自2008年3月起至今呈现爆发式增长,年均增长达150%,2017年锂电新能源产业实现产值358.37亿元、增加值151.59亿元、均增长37.5%,拉动宁德全市规上工业增长6%。目前,宁德已成为全球最大的聚合物锂离子电池生产基地。
在锂离子电池正极材料的研究方面,德裔美国学者GOODENOUGH教授作出了巨大贡献:他1980年就职于英国牛津大学期间发现钴酸锂(LiCoO2,简称LCO)可用作锂电正极,次年在LCO专利中提及镍酸锂(LiNiO2,也称LNO)作为正极材料的可行性;1983年,又与访问学者THACKERAY一起,首次尝试将锰酸锂(LiMn2O4,简称LMO)用于锂离子电池;1997年,在美国德州大学Austin分校期间,基于雄厚的固体化学理论,开发出新型橄榄石结构正极材料——磷酸铁锂(LiFePO4,简称LFP)。此外,