• 电压调节器的负载瞬态响应测试,第三部分

    该稳压器在其输入 (C IN ) 和输出 (C OUT )处使用电容器来增强其高频响应。您应该仔细考虑电容器的电介质、值和位置,因为它们会极大地影响稳压器特性。C OUT主导调节器的动态响应;C IN的重要性要小得多,只要它不低于稳压器的压降点即可。

  • 电压调节器的负载瞬态响应测试,第二部分

    图 8中的电路大大简化了先前电路的环路动态,并消除了所有交流微调。主要的权衡是速度减半。该电路类似于图 6中的电路,不同之处在于 Q 1是双极晶体管。双极型大大降低的输入电容允许 A 1驱动更良性的负载。这种方法允许您使用具有较低输出电流的放大器,并消除了适应图 6的 FET 栅极电容所需的动态调整。唯一的调整是 1-mV 调整,您按照描述完成。

  • 电压调节器的负载瞬态响应测试,第一部分

    半导体存储器、读卡器、微处理器、磁盘驱动器、压电设备和数字系统会产生电压调节器必须服务的瞬态负载。理想情况下,稳压器输出在负载瞬态期间是不变的。然而,在实践中,会发生一些变化,如果系统超出其允许的工作电压容差,这种变化就会成为问题。这个问题要求测试稳压器及其相关的支持组件,以验证在瞬态负载条件下所需的性能。您可以使用各种方法来生成瞬态负载并允许观察调节器响应。

  • 低静态电流 PMIC 有助于延长电池寿命

    当今电子设计中最关键的挑战之一是降低能耗。电源管理是许多设备的重要设计考虑因素,尤其是那些依赖电池运行的设备。因此,大多数系统使用各种电源管理操作模式。

    线性电源
    2022-10-12
    电源 PMIC
  • 超低静态电流电源芯片提供更长的电池寿命

    当今电子设计中最关键的挑战之一是降低能耗。电源管理是许多设备的重要设计考虑因素,尤其是那些依赖电池运行的设备。因此,大多数系统使用各种电源管理操作模式。

  • CMOS耗尽模式技术具有许多优势,第二部分

    众所周知,当 V GS 在增强模式下为正时,N 型耗尽型 MOSFET 的行为类似于 N 型增强型 MOSFET;两者之间的唯一区别是 V GS = 0V时的漏电流 I DSS量。增强型 MOSFET 在栅极未通电时不应泄漏任何电流,因此当 V GS = 0V 时 I DSS必须 为 0,但当 V GS = 0V 时允许 I DSS电流流过耗尽型 MOSFET 的传导通道 。

  • CMOS耗尽模式技术具有许多优势,第一部分

    传统上,耗尽型 MOSFET 被归类为线性器件,因为源极和漏极之间的传导通道无法被夹断,因此不适合数字开关。这种误解的种子是由 Dawon Kahng 博士播下的,他在 1959 年发明了第一个耗尽型 MOSFET——只有三个端子当栅极控制电压在电源和地之间变化时,栅极的三端耗尽型 MOSFET 的沟道。Dr. Kahng 的耗尽型 MOSFET 只能用作可变电阻或同相线性缓冲器。从那时起,耗尽型 MOSFET 一直被用作三端线性器件。

  • 氮化镓技术讨论,第二部分

    目前有几个 GaN 器件概念。那么你能告诉我哪些是主要的,从设计的角度来看你的发展方向是什么? 所以我想说有很多概念,远不止两个,但不知何故,我们可以谈论极端:所谓的Cascode GaN和所谓的增强模式GaN。由于我的第一家公司,级联 GaN 实际上是第一个诞生的。当功率 GaN 研究的先驱 International Rectifier 首次开始开发基于级联的 GaN 解决方案时,我就在那里。

  • 氮化镓技术讨论,第一部分

    氮化镓提高了功率转换级的效率。GaN 很有吸引力,因为它比硅具有更高的能效、更小的尺寸、更轻的重量和更便宜的总成本。在剑桥 GaN 器件业务开发副总裁 Andrea Bricconi 的讨论中,我们将分析这个宽带隙生态系统的最新技术,这些技术将推动下一步的改进。

  • 分析SiC器件的成本竞争力,第四部分

    目前SiC在成本方面,以及 150 毫米直径的基板或 200 毫米。因此,展望未来,重点将放在开发用于扩大碳化硅器件应用的技术上。有分析认为,未来未来,碳化硅解决方案将占据电力电子市场的很大一部分,很大一部分,可以说是电动汽车。那么,我们如何看待它和降低成本的技术对于实现这些市场渗透尤为重要。那么,高价格背后的原因是什么,以及可以采取哪些措施来为下一个市场未来降低价格?

  • 分析SiC器件的成本竞争力,第二部分

    如我们所知,目前增长最快的碳化硅产品是二极管和 MOSFET。主要碳化硅生产商最近发布的新闻稿强调了一些为电动汽车提供模块的长期合同。

  • 分析SiC器件的成本竞争力,第一部分

    在多个能源行业中,碳化硅 (SiC) 行业正在扩展以提供高效,而碳化硅 (SiC) 正在多个能源行业扩展以提供极其高效和紧凑的解决方案。由于碳化硅在电动汽车和新能源等领域的重要性,许多公司正在评估和投资晶圆技术。在华威大学 SiC 功率器件教授兼 PGC 咨询公司创始人 Peter Gammon 的访谈中,我们将探讨 SiC 的成本和技术。

  • 了解传导产生的EMI电磁干扰问题

    电磁干扰是我们生活的一部分。许多人认为电子产品的普及是一件好事,因为它们提高了我们的舒适度、安全性和健康度。这些产品还带来了潜在的电子有害 EMI 信号。EMI 信号可以来自各种来源,包括我们周围常见的电子设备,以及车辆和重型设备。在汽车设计中,其中一些 EMI 发生器与车辆的敏感电子电路位于同一个机柜中。这种接近会影响音响设备、自动门控制和其他设备。

  • GaN 助力转向 800V 牵引逆变器

    在过去的几年里,我们道路上的电动汽车 (EV) 的数量显着增加,给设计人员带来了严峻的挑战,例如最大限度地提高 EV 效率、优化充电基础设施和缩短充电时间。

  • 面向设计师的 datasheets.com

    本教程将介绍https://www.datasheets.com的主要功能,这是一个详尽的任何电子元件的数据表和技术文档集合。任何电子设计师、工程师或简单的爱好者都会发现这是一个非常有用的资源。该网站提供先进的研究工具等等。

发布文章