• 如何选择合适的放大器来保护ADC芯片

    许多模拟系统必须以出色的保真度或低失真适应非常大范围的信号幅度。同时,一些信号链组件被过大的信号损坏。一个示例是模数转换器(ADC) 输入。对于像ADC16DV160这样的高性能 ADC ,其中一个 Vin 引脚上的绝对最大输入电压为 2.35-V。

  • 如何保证我们的电机在不同负载下,保持恒定速度至关重要

    幸运的是,现代电子技术与大量控制理论相结合,使得控制速度变得相对容易。与转矩和位置一样,速度是通常建立的三个基本电机参数控制回路之一。需要精确速度控制的示例电机应用包括冷却风扇、硬盘驱动器、激光打印机和装配线传送带。在这些类型的应用中,在不同负载下保持恒定速度至关重要。

  • 使用电源管理单元PMU实现更高的电源转换效率,更低功耗

    人类最原始的冲动是前进,让事情变得更好、更快、更大。我们在半导体行业看到了同样的人类趋势,嗯,除了更大,在电子世界中实际上更小。一旦晶体管被发明出来,早期的先驱者就会问:“我们可以在同一个芯片上放置多个晶体管吗?” 导致杰克·基尔比发明了集成电路。如今,电源管理单元 (PMU) 将数量惊人的电路集成到单个 IC 中,更好、更小、更快地实现了这一目标。

  • GaN 功率器件,E-模式 HEMT技术选择介绍和发展情况

    最流行的 e-mode HEMT 结构是在栅极上使用 p-GaN 层。实现的典型 Vt 在 1-2 V 范围内。HEMT 在开关应用中的固有优势得以保留,并且开关损耗可以更低。e-mode 器件的主要缺点之一是其低 Vt,这可能导致栅极对噪声和 dV/dt 瞬态的抗扰度较差。出于可靠性原因,最大栅极电压通常限制为 6-7 V,并且可能需要负电压来关闭器件。

  • .GaN 功率器件,D 模式 HEMT技术选择介绍

    氮化镓 (GaN) 功率器件在几个关键性能指标上都优于硅 (Si)。具有低本征载流子浓度的宽带隙允许更高的临界电场,从而允许在更高的击穿电压下具有降低的特定导通电阻 (Rds on ) 的更薄的漂移层。导通损耗可以通过较低的 Rdson 降低,而动态损耗可以通过GaN可能的更小的裸片尺寸来降低. 当它与铝基异质结构结合时形成二维电子气 (2DEG) 的能力导致了备受青睐的高电子迁移率晶体管 (HEMT) 功率器件。

  • GaN FET:音响发烧友的首选技术

    从智能设备充电器等低功率、低成本应用一直到高功率汽车应用,氮化镓 FET 正成为许多产品的广泛首选。大多数情况下,设计人员对 GaN 提供的更高的效率和功率密度印象深刻,这导致器件具有比硅同类产品更大的功率能力。然而,高端音频放大器现在也越来越多地转向 GaN 技术,因为 GaN FET 的平滑开关特性导致注入放大器的可听噪声更少。

  • 微步步进电机时电流调节的技巧

    我有一个朋友喜欢世界各地的最新技术。带着对 3D 打印机的狂热,他最近邀请我去他的公寓欣赏他的新杰作,一台自制的 3D 打印机。嗯,他确实很好地为我打印了一只三条腿半个头的小狗,但真正引起我注意的是他的打印机在制作小狗时发出的小声响。因此,在赞扬了他的出色工作之后,我们花了一些时间讨论导致这种噪音的原因。

  • 用于无电池设计的物联网供电的太阳能收集方案

    在大多数物体将通过互联网连接的未来,设备和传感器将不得不无线工作且无需电池。这对于减少能源消耗和环境污染非常重要。

  • 使用3D 打印构建能够进行太阳能收集的细菌

    由 Yusuf Hamied 化学系的 Jenny Zhang 领导的英国剑桥大学的一组研究人员成功展示了细菌和光合作用在太阳能收集中的应用。

  • 英飞凌的新建工厂计划,扩大功率器件的产能

    英飞凌扩展印度尼西亚后端站点以满足汽车 IC 需求 作为其长期投资战略的一部分,德国芯片制造商英飞凌科技表示,它计划扩大其在印度尼西亚巴淡岛的现有后端业务。预计将于 2024 年开始生产。

  • 关于MOCVD、HTCVD 和 MBE 在内的外延设备发展状态,释放分子束外延的潜力

    对更强大和更节能设备的空前需求刺激了对砷化镓、氮化镓和碳化硅等化合物半导体的需求。这种材料需要通过外延生长的超纯薄膜。尽管分子束外延 (MBE) 是三种外延设备之一,长期以来一直被认为是利基市场,但它已准备好过渡到批量应用。

  • 如何停止使用一次性电池,并促进能量收集应用的发展

    第一个电池是在 1800 年发明的。200 多年后,我们仍然使用不可充电电池,尽管它们对实际和环境有负面影响。随着社会转向更可持续和更有效的方式为低功率设备获取能源,这些缺点可能很快就会成为过去。这种转变将使我们的生活更轻松,因为无需更换电池。工业将特别受益,因为在工业规模上更换电池的成本可能相当高。

  • 对于我们的物联网系统,如何收集少量的能量作为动力分析

    爱因斯坦的相对论描述了引力波的物理性质。它们带来能量,非常低的能量值,不像太阳免费发送给我们的光子(量子),无需任何额外费用来为我们的房屋供电。太阳本身代表了最重要的无限来源,它使我们能够使用免费电力或收集太阳能来发电。新的设计和制造方法使现代太阳能电池板更实惠、更高效。活力收集收集少量的能量,为现在接近物联网的各种小型设备提供动力。

  • 固态电池下一代电池系统的终极电池技术,电池革命即将到来

    锂离子 (Li-ion) 电池已成为许多应用的首选技术。锂离子电池供电系统的范围从手机、笔记本电脑和电动工具到电动汽车、电动卡车和公共汽车,甚至电动飞机。传统的锂离子电池包括正极、负极、隔膜和液体电解质。易燃液体电解液是造成锂离子电池安全问题的原因,例如电解液泄漏、火灾或爆炸。顾名思义,在固态电池中,易燃液体电解质被固态电解质取代,从而提高了安全性并增强了电池特性。固态电池的开发旨在打造具有更高能量密度、快速充电能力、更低成本和更高安全性的下一代电池。

  • 在单向车载充电器应用中使用碳化硅器件进行电源设计

    电动汽车车载充电器 (OBC) 使电动汽车能够在任何有交流电源的地方充电。根据功率级别和功能,它们可以采用多种形式。充电功率从电动踏板车等应用中的不到 2 kW 到高端电动汽车中的 22 kW 不等。传统上,充电功率是单向的。一个新的趋势是在 OBC 中添加双向功能,使 EV 可以成为移动储能系统。本文将仅关注单向 OBC,并讨论碳化硅在 2 kW 以上高功率应用中的优势。

发布文章