平板显示产业正在经历20年来一次最为重要的技术变革,可它对普通消费者来讲似乎是不能一眼就可以看穿的。这里所说的变革都与晶体管技术的进步密切相关,所谓的晶体管即可以控制显示画面,呈现清晰亮丽影像的微小电子
如何建立一个可扩展的基于晶体管的防盗报警器? 这是一个简单的晶体管的防盗报警电路。它的功能包括自动出入境延误 - 贝尔一起定时切断复位。它的设计是与常闭输入设备类型,如通常使用 - 磁簧触点 - 微动开关 -
近年来随着晶体管标称尺寸不断缩小,引领集成电路发展的摩尔定律受到了巨大的威胁。不过英特尔凭借强大的研发实力,硬是将摩尔定律延续下来,在2012推出新一代酷睿处理器——Ivy Bridge,让我们进入22nm时
两只晶体管按如图1的连接法叫做达林顿电路,其放大系数是两只三极管的放大系数的乘积.什么是达林顿管达林顿管是将二只三极管适当的连接(如上图所示)在一起,以组成一只等效的新的三极管,便是达林顿管,这个过程又称
电压放大与电流放大制作电压放大级,通常可用共发射极或共基极以及源接地或栅接地的有电压增益的电路。这些电路仅进行电压放大,因电路的电流小,故没有发热的问题。在制作电流放大级时,要对电压放大级放大后的电平
下图是采用晶体管构成的小功率DC/DC变换器电路。其中,图(a)是把+5V输入电压变换为-12V输出电压的电路,图(b)是把+5V输入电压变换为+12V输出电压的电路。对于任一电路,若输出电压超过稳压管VDw的稳定电压,就对
英特尔公司全球副总裁兼中国区总裁 杨叙当前,以个性化互联网为特征的智能革命正席卷全球,这将产生极大的计算需求。计算力将主导智能手机的未来,而计算创新潜力无限。我们认为,未来用户需要的是“互联计算&r
下图是采用晶体管构成的小功率DC/DC变换器电路。其中,图(a)是把+5V输入电压变换为-12V输出电压的电路,图(b)是把+5V输入电压变换为+12V输出电压的电路。对于任一电路,若输出电压超过稳压管VDw的稳定电压,就对
受到物理限制,电子工程师必须构想出更加精巧的晶体管1965年,戈登•摩尔预言,在一定大小的芯片上所能容纳的晶体管的数量每两年就会增加一倍,这就是所谓的摩尔定律。多年来这个定律一直在发挥作用。第一个集成
英特尔初步揭示了22nm工艺技术,它采用了众所期盼的3D晶体管设计──称之为三栅极──自2002年起英特尔便一直就该技术进行开发。而在本周的IDF中,英特尔预计将公布更多有关首款22nm芯片的细节,该芯片预计今年底可进
北京时间5月3日凌晨消息,据美国IT网站ComputerWorld报道,一位知名的理论物理学家称,计算机行业中的关键理论“摩尔定律”(Moore'sLaw)即将崩溃。纽约市立大学理论物理教授加来道雄(MichioKaku)在接受BigThink.com网
将PNP晶体管制作的射极跟随器与NPN晶体管制作的射极跟随器的两级串联连接,进而特该电路上下重叠成推挽电路(下侧为NPN+PNP的射极跟随器)二级直接连接的推挽射极跟随器。在电路内部使用的晶体管均作为射极跟随器工作
OP放大器与射极跟随器相组合形成的电路(电压增益为20dB的非反转放大电路)。如该电路所示,射极跟随器被插入到OP放大器的输出端,射极跟随器的输出将反馈加到OP放大器的输入端。由此可以增大电路的输出电流。通常,
OP放大器与推挽射极跟随器相组合的电路(电压增益为OdB的反转放大器)。因为使用将NPN与PNP晶体管的基极共同连接的推挽射极跟随器,该电路在输出端不取出电流时,发射极电流不流动,所以电路的效率非常高。这是该电路
电压放大与电流放大制作电压放大级,通常可用共发射极或共基极以及源接地或栅接地的有电压增益的电路。这些电路仅进行电压放大,因电路的电流小,故没有发热的问题。在制作电流放大级时,要对电压放大级放大后的电平
该放大器在较高的输出下能保持高保真的素质,可以对4Ω/8Ω的负载提供2×73/44瓦的输出功率,失调电压小于土40mV,输入阻抗为100kΩ,谐波失真小于0.015%,互调失真小于0.02%,频率范围为
将负载做成电流镜像电路的差动放大电路。所谓电流镜像电路是一种恒流电路。将它作为放大电路的负载使用,就能够提高电路的增益。为此,经常用在OP放大器1C的初级上。电流镜像电路在NPN晶体管的差动放大电路中使用PNP
1COP放大器有几百种,并且由各种用途所决定(例如,用于高精度直流放大,宽频带放大、单电源工作以及低动耗电路等),内部的电路也与用途相对应而有各种形式。在本章作为目标的OP放大器,是从可以用于多种用途的理由
在这里要设计的OP放大器的电路图。该电路是直接将图12.8电路结构进行具体化后的电路。差动放大电路与共发射极放大电路的恒流源都用Tr3与Trs来制作,推挽射极跟随器的偏置是直接使用LED的正向压降。差动放大电路侧的集