内容摘要:介绍了利用CYPRESS公司的FIFO芯片CY7C419实现DSP间双向并行异步通讯的方法,该方法简单实用,速度快,特别适用于小数据量的数据相互传送。文中给出了CY7C419的引脚功能以及用FIFO实现DSP间双向并行异步通讯的
用FIFO实现DSP间的双向并行异步通讯
摘要:本文论述了基于CY7C09449的高速PCI数据采集卡的硬件和软件设计,重点论述了FPGA芯片的逻辑编程、WindowsXP下的驱动程序编程。FPGA的逻辑设计着重讨论了对CY7C09449局部总线的同步传输控制逻辑的设计,这种逻辑
1 FIFO概述 FIFO芯片是一种具有存储功能的高速逻辑芯片,可在高速数字系统中用作数据缓存。FIFO通常利用双口RAM和读写地址产生模块来实现其功能。FIFO的接口信号包括异步写时钟(wr-clk)和读时钟(rd-clk)、
FIFO芯片IDT72V3680的功能特点及应用
基于WCDMA速率适配算法的FPGA设计
摘要:本文提出了一种基于可编程逻辑器件(FPGA)芯片EP2C20F484的任意波形发生器的设计方法。完成了在FPGA的控制下,USB接口控制模块、SRAM控制模块、DA转换模块等协同工作的硬件设计、固件设计以及软件设计,并给出了
在高频超声波数据采集系统中,很多高速 A/D转换器往往不能直接与处理器相连接,这时就需要使用FIFO在处理器与A/D转换器之间架一座桥梁,FIFO的先入先出特性可以方便缓存大量的数据块。在基于ARM的超声波测厚系统中
FPGA设计的高速FIFO电路技术
在基于ARM的超声波测厚系统中,ARM处理器的数据接收能力往往与A/D芯片的工作速率不匹配,为避免有效数据丢失,提高系统工作效率,用FIFO作为高速A/D与ARM处理器之间的中转接口会得到很好的效果。这里以FIFO存储器CY7C4261作为中转器件实现了A/D芯片AD9283与ARM处理器S3C2410的接口设计,并叙述了数据从A/D芯片到ARM的整个数据采集过程。该接口电路用FIFO实现了超声测厚系统中A/D与ARM之间的无缝连接,提高了系统测厚精度。它的电路简单,调试方便,具有较高的应用价值。
前言 在大容量高速采集系统项目的开发过程中,FPGA作为可编程逻辑器件,设计灵活、可操作性强,是高速数字电路设计的核心器件。由于FPGA内嵌存储器的容量有限,通常不能够满足实际设计电路的需求,需要外接SRAM、
常用FPGA/CPLD四种设计技巧
针对航天检测设备中信号源单一、不可调等缺点,提出并实现了一种以FPGA 、高速D/A、继电器AQY210为核心,结构简单,控制灵活,信号质量高的多功能信号源生成系统。该系统可提供各种频率、幅值、偏置等参数可调的模拟信号,成功应用于工业控制开关量输出性能检测。同时,上位机与硬件通信的接口使用了USB-单片机(CY7C68013)和USB-FIFO(FT245)两种方案,并进行实际对比,提出其适用条件和范围。
针对航天检测设备中信号源单一、不可调等缺点,提出并实现了一种以FPGA 、高速D/A、继电器AQY210为核心,结构简单,控制灵活,信号质量高的多功能信号源生成系统。该系统可提供各种频率、幅值、偏置等参数可调的模拟信号,成功应用于工业控制开关量输出性能检测。同时,上位机与硬件通信的接口使用了USB-单片机(CY7C68013)和USB-FIFO(FT245)两种方案,并进行实际对比,提出其适用条件和范围。
数字信号处理器的发展也是日新月异,不仅行指令速度越来越快,而且其功耗也越来越低。许多仪器或检测设备都不约而同地将DSP 应用到那些数据量庞大而且需实时传送数据的系统中。核信号数据采集系统也不例外,利用 D
DSP核信号采集系统通讯接口原理及设计
摘要:本文设计了一种基于USB2.0芯片CY7C68013和Maxim公司的高速并行模数转换芯片MAX1195的高速双路数据采集系统,采用EZ-USB FX2 的特有的GPIF(General Programmable Interface)传输方式,彻底打破了8051CPU对USB2
摘要:本文设计了一种基于USB2.0芯片CY7C68013和Maxim公司的高速并行模数转换芯片MAX1195的高速双路数据采集系统,采用EZ-USB FX2 的特有的GPIF(General Programmable Interface)传输方式,彻底打破了8051CPU对USB2
0 引 言 传统的图像传输普遍采用由PC机主板所提供的各种接口来实现,如PCI接口、EPP接口、IEEE 1394接口等。PCI接口的最高速率可达到132 Mb/s,但其安装麻烦,价格昂贵,可扩展性差,无法专门对其做电磁屏蔽
为实现目标识别与跟踪的应用目的,在基于TMS320DM642的FIFO基础上扩展存储空间,提出一种基于FPGA实现SDRAM控制器的方法。分析所用SDRAM的特点和工作原理,介绍FPGA中SDRAM控制器的组成和工作流程,给出应用中读SDRAM的时序图。FPGA采用模块化设计,增强SDRAM控制器的通用性,更方便地满足实际需求。