• 延长 LED 灯泡的使用寿命

    取代全球最大国家强制要求的白炽灯照明正在推动向固态照明的范式转变。LED 照明与替代照明技术相比具有显着优势,尤其是随着每瓦流明的增加和每流明成本的降低。与传统白炽灯泡相比,这些替代技术的主要优势之一是灯泡的实际使用寿命及其每瓦时的成本。

  • 适用于恶劣环境的坚固线性电源管理

    如果你和我一样,每当我听到“工厂”和“自动化生产线”这两个词时,我常常会想到长传送带、机械臂和大量活动部件。这是一个令人着迷的能量和一个令人难以置信的检查和平衡系统,为了生产任何东西,即使是那些我们用来尝试我们最喜欢的冰淇淋口味的一次性小勺子。

  • 高效的PFC 控制器,包含功率测试功能方案

    实时能耗测量,包括离线电源的输入有功功率、输入 RMS 电压和输入 RMS 电流测量,变得越来越重要。这些测量可用于调整电力输送和优化能源使用。传统上,输入功率和电流是由专用的功率计量芯片测量的,但是这会增加额外的成本和设计工作。

  • 大规模储能的潜在候选者:钠离子电池

    近几十年来,锂离子电池技术的进步改善了全球的生活条件。锂离子电池(Lithium ion batteries,简称LIB)用于大多数移动电子设备以及电动车辆。然而,人们越来越担心可再生能源和智能电网的负载均衡,以及锂源的可持续性,因为锂资源的地球储量相对有限,这必将导致锂资源紧张和原材料价格飙涨。因此,单靠LIB能否满足小型和/或中大型储能应用不断增长的需求仍不清楚。为了缓解这些问题,最近的研究集中于替代能源储存系统。钠离子电池(Sodium ion batteries,简称SIB)被认为是最佳候选电源。

  • 储能,新能源的又一个“扛把子”!

    随着电网覆盖率的大幅提高,目前已经几乎没有家庭需要再考虑供电问题,家用风机/光伏+电池的组合本来会逐渐淡出人们的视野,但是因为碳中和的到来,这种组合却正在成为全国电力系统必不可少的组成部分。

  • 使用优化的 EMC 设计进行系统集成

    汽车解决方案必须满足对电磁能力 (EMC) 的严格要求,这从根本上是一个系统集成问题。随着 ECU 和线束的数量和复杂性的增加,问题只会变得更糟。挑战不是电子产品的增加,而是 OEM 上市时间需要更短的最终产品验证时间。消费电子进步的步伐也使硬件冗余变得更加复杂,并迫使汽车系统更快地迁移以跟上这一步伐。

  • 在 USB Type-C ACDC 应用中使用偏置控制器

    USB Type-C 标准允许使用标准电缆实现 5V 至 20V 范围内的可调输出电压和高达 3A 的负载电流。由于功率水平高达 60W,反激式仍然是拓扑的不错选择。然而,为初级侧控制器提供偏置电源可能会带来一些挑战。

  • 我设计的 LDO电 有问题吗?

    选择像线性稳压器这样简单的东西通常是热动力学方面的一课。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。

  • 使用阻尼输入磁珠共振以防止电源振荡

    抑制输入滤波器谐振的传统方法是添加另一个电容,其电容至少是原始输入电容的三倍,并与一个串联电阻进行阻尼,增加的电容至少是输入电容的四倍。最佳阻尼发生在电阻值非常接近电感除以原始输入电容的平方根时(见下面的等式 2)。然而,在许多情况下,客户不想投入那么多电容,如果他们确实添加了成本较低的电解电容器,电阻值可能会有很大差异。这些电容器中的大多数都指定了最大串联电阻,但典型部件只有 1/4th到该值的 1/3 rd 。

    电源电路
    2022-08-19
  • 射频链路中的射频扼流圈与电感器介绍

    电感是电导体的特性,它阻止流过它的电流发生变化。它被定义为感应电压与产生感应电压的电流变化率之比,以亨利 (H) 为单位。RF 电感器的电感额定值通常在大约 0.5 纳亨 (nH) 或更低到数百 nH 的范围内。正如下面关于 RF 电感器结构选择的部分所述,电感取决于结构、磁芯尺寸、磁芯材料和线圈匝数。电感器可提供固定或可变电感值。

  • 如何使用 EMI 强化运算放大器来减少电路误差

    在电磁干扰(EMI) 强化放大器诞生之前,像我们这样的系统设计师只能实施自己的滤波方案。其中一些方案奏效了,而另一些则没有成功,让我们头疼不已。

  • 为我们的 MSP430 应用设计更小电源电路

    因此,假设我们几乎完成了最新最好的MSP430应用程序。所有的错误都已被根除,它的工作就像一个魅力。它几乎准备好进入主舞台,但仍有一件事需要注意:电源。毕竟,我们不能指望每个人都用实验室电源为他们的应用程序供电,对吧?

  • 提高雷达系统的动态性能

    如果我们正在设计汽车雷达,甚至是商业或军用雷达系统,我们都会受到物理学的约束。我想改变这一点,但我在大学里的许多老教授都说“有些规则可以改变,有些自然法则是不可动摇的”。无线电传输中的路径损耗就是其中之一。因此,如果我们想让雷达看得更远,就需要提高系统的动态范围。

  • 发展更高效的能源电网电源

    智能电网的目的是允许通过电源进行通信以提高电网的效率。这是通过确保连接到电网的任何设备不仅对预期功能具有高能效,而且将以最有效的方式使用能源,最大限度地减少峰值功耗和平均整体功耗来实现。

  • 介绍有损耗和无损耗电流测试方法

    只需使用电阻器即可测量电流。 每个人都知道欧姆定律:V=IR。通过测量已知电阻器上的电压,可以确定电流。图 1 显示了一个非常简单的图表,说明了如何测量电源输出中的电流。

发布文章