欧盟大约有 80 亿台电动机在使用,消耗了欧盟生产的近 50% 的电力。由于提高效率和减少碳足迹是政府和行业的主要目标,因此存在多项举措来降低这些电机的耗电量。例如,许多家用电器能源标签的全球标准通过降低能耗以及可听和电气噪声等来影响电器的设计。另一个例子是欧洲引入了工业电机的效率等级,有效地切断了低效率电机的市场。
深圳2022年6月27日 /美通社/ -- 去年,这家移动巨头公司推出了重新设计的16英寸笔记本电脑,配备了各种各样的端口、先进的连接功能和卓越的电池寿命,这些都需要一款140W电源适配器的支持。但众所周知,这款16英寸笔记本电脑的原装充电器只能为一个设备充电,这给那些想在商务旅...
(全球TMT2022年6月27日讯)Stiger Group(Anker、AOC和RAVPower的供应商)旗下的快充品牌Kovol将最新的Power Delivery 3.1应用到16英寸笔记本电脑设计的全新140W双口壁式充电器中,让其可以同时为两个设备快速充电。通过采用最...
最近可能遇到了“GaN”,它正在一些关键的功率转换应用中取代硅 (Si)。在本博客系列“如何使用 GaN 进行设计”中,我将了解氮化镓 (GaN) 与 Si 的不同之处,以及使用 GaN 创建电源设计时的关键考虑因素。
本文分析了高性能肖特基势垒二极管和 D 型 HEMT 在基于 p-GaN HEMT 的 200-V GaN-on-SOI 智能功率 IC 平台上的成功协同集成。这些组件的添加使芯片设计具有扩展的功能和更高的性能,使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的DC/DC 转换器和 PoL 转换器 铺平了道路。
在 2021 年国际电子器件会议 (IEEE IEDM 2021) 上,世界领先的纳米电子和数字技术研究和创新中心 imec 展示了高-性能肖特基势垒二极管和耗尽型 HEMT 在基于 p-GaN HEMT 的 200 V GaN-on-SOI 智能功率集成电路 (IC) 平台上开发,该平台在 200 mm 衬底上开发。添加这些组件可以设计具有扩展功能的芯片并提高性能,从而使单片集成 GaN 功率 IC 更进一步。这一成就为更小、更高效的 DC/DC 转换器和负载点转换器铺平了道路。
我最近与您分享了TI 全新 Piccolo™ F28004x 微控制器 (MCU) 系列的生产公告,该系列针对电源控制应用进行了优化。 Piccolo F28004x 用于高性能电源控制的主要特性包括:
Navitas 的集成 GaN 解决方案 (GaNFast)通过提供五倍的功率密度、40% 的节能和 20% 的生产成本,使充电系统的运行速度比传统硅组件快 100 倍。例如,您将能够更快地为智能手机充电。
北京2022年5月4日 /美通社/ -- 玛氏宠物旗下会员社交平台正式推出玛氏宠享会领养中心,秉承“为宠物创造美好世界”的愿景,建设链接宠物家长、爱心人士和待领养宠物的桥梁,积极推动领养公益的发展。 玛氏宠物营养新任中国总经理任嘉实(Ganesh Ramani)表示 :...
氮化镓 (GaN) 场效应晶体管 (FET) 的采用正在迅速增加,因为它能够提高效率并缩小电源尺寸。但在投资该技术之前,我们可能仍会问自己 GaN 是否可靠。令我震惊的是,没有人问硅是否可靠。毕竟还是有新的硅产品一直在问世,电源设计人员也很关心硅功率器件的可靠性。
真正的度假,在君澜 杭州2022年4月22日 /美通社/ -- 2022年4月22日,君澜酒店品牌概念片《不虚此行》首映礼成功举办。本次活动共分为三个部分,不虚此行、不期而遇、不见不散,内容环环相扣,惊喜不断。与活动一同发布的,还有君澜突破200家仪式,以及...
新 IC 工艺的开发和商业化,尤其是有些激进的工艺,在我看来一直是设备技术的神奇和神秘的终结。是的,有聪明的电路、架构和拓扑结构,但是构思一个新的过程,然后让它成为现实和可制造的——以及现实所需要的一切——似乎需要对物理定律、材料科学、量子理论、以及更多。事情并没有就此结束:在工艺技术进步之后,我们仍然需要提出设计规则和模型,以便 IC 设计人员和生产流程能够真正利用该工艺。
增强型氮化镓 (GaN) 晶体管已商用五年多。市售的 GaN FET 设计为比最先进的硅基功率 MOSFET 具有更高的性能和更低的成本。这一成就标志着 60 年来第一次在性能和成本方面任何技术都可以与硅相媲美,并标志着古老但老化的功率 MOSFET 的最终取代。
在过去的几十年中,碳化硅和氮化镓技术的进步一直以发展、行业接受度不断提高和有望实现数十亿美元收入为特征。第一个商用 SiC 器件于 2001 年以德国英飞凌的肖特基二极管的形式问世。随之而来的是快速发展,到 2026 年,工业部门现在有望超过 40 亿美元。 2010 年,当总部位于美国的 EPC 交付其超快速开关晶体管时,GaN 首次惊艳了整个行业。市场采用率尚未与 SiC 相匹配,但到 2026 年,功率 GaN 收入可能达到 10 亿美元。
分立氮化镓 (GaN) FET 的兴起增加了对更用户友好界面的需求,同时也提高了效率。半桥 GaN 功率级(例如LMG5200)具有用于高低 GaN FET 的单独驱动输入。两个输入(图 1 中的引脚 4 和 5)使我们能够优化效率,因为我们可以调整每个 FET 开启和关闭的确切点。
ST获得了全球50%以上的SiC MOSFET市场份额;并且在宽禁带半导体领域进行了衬底技术收购、产能投资,拥有了全生产链条的掌控力。本文分享了ST在SiC领域获得成功的原因,如何保持领先的未来战略规划,以及对于整个宽禁带器件行业的前景解读。
随着在晶体管制造中引入新的宽带隙材料,例如氮化镓 (GaN),显着的品质因数改进转化为电源的潜在改进。使用比硅基半导体具有更高带隙的新型材料可以减小芯片尺寸,同时保持相同的阻断电压。
近年来,诸如氮化镓 (GaN) 和碳化硅 (SiC) 场效应晶体管 (FET) 之类的宽带隙功率器件已开始商用。与高压 (≥600V) 硅 FET 相比,GaN 和 SiC FET 通常具有更低的导通电阻 (R ds(on) )、更低的输出电容 (C oss ) 和更少/没有反向恢复电荷 (Q rr )。由于其较低的开关损耗,我们可以大大提高具有宽带隙功率器件的硬开关转换器的效率。
所有功率级设计人员都喜欢在开关节点看到完美的方波。快速上升/下降沿可降低开关损耗,而低过冲和振铃可最大限度地减少功率 FET 上的电压应力。
氮化镓 (GaN) 高电子迁移率晶体管 (HEMT) 提高了转换器效率,与具有相同额定电压的硅 FET 相比,具有更低的栅极电荷、更低的输出电荷和更低的导通电阻。在总线电压大于 380V 的高压 DC/DC 转换器应用中,耗尽型(d 型)GaN HEMT 比增强型(e 型)GaN HEMT 更受欢迎。