北京2024年12月11日 /美通社/ -- 今年的诺贝尔奖,将AI推到了科学舞台的中央,标志着AI在科学研究中的重要地位得到了认可,也体现了学科交叉赋能将成为AI时代的科研发展趋势。用AI赋能学科研究,创新科研新范式。这一点在西湖大学的科研项目中已得到体现。 成立于2018年...
在人工智能(AI)技术日新月异的今天,神经网络作为其核心驱动力,正逐步渗透到各个行业与领域。然而,传统的神经网络模型往往受限于计算资源和功耗,难以在边缘设备上实现高效运行。现场可编程门阵列(FPGA)作为一种高性能、低功耗的硬件加速器,为小型神经网络的部署提供了理想的平台。本文将深入探讨适用于FPGA的小型神经网络,以及它们在边缘智能应用中的独特优势。
在日益复杂的工业和汽车环境中,状态监测对于确保安全可靠的运行变得越来越重要。通过数据分析可以检测运行异常和潜在的设备缺陷,从而在发生故障之前及时进行维修。它还可以最大限度地减少维护频率并避免不必要的成本。
从受到人类大脑的启发,到发展出能够获得非凡成就的复杂模型, 神经网络 已经走了很长一段路。在接下来的博客中,我们将深入讨论神经网络的技术历程--从基本感知器到先进的深度学习架构,推动人工智能的创新。
在过去10-15年中,人工神经网络领域的发展迅速。典型的应用是图像处理、声音等领域的高维数据.然而,在机器学习中,系统输入的数据量很小的任务很少:例如,异常事件建模、处理人工收集的分析数据、分析低频传感器的信号等。在这种情况下,一个重要阶段是对系统训练有素的特点("特点")进行认真的工作,特别是从现有的基本特点中产生新的特点,这将能够提高设计系统的性能质量。手动方法通常用于这种生成,但是一个好的选择是使用神经网络,它不仅能够学习基本的数学运算,而且能够识别输入数据中极其复杂的模式。
该实验室的创新技术能够增强人工智能边缘解决方案,提高神经网络能力
机器学习将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对机器学习的相关情况以及信息有所认识和了解,详细内容如下。
深度学习需要大量的计算。它通常包含具有许多节点的神经网络,并且每个节点都有许多需要在学习过程中必须不断更新的连接。换句话说,神经网络的每一层都有成百上千个相同的人工神经元在执行相同的计算。
人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
许多人工智能计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。
1956年,美国Dartmouth大学举办的一场研讨会中提出了人工智能这一概念。
米尔 MYD-Y6ULX-V2 开发板,基于 NXP i.MX6UL/i.MX6ULL处理器,该开发板被米尔称之为经典王牌产品。本次测试目标是在此开发板上进行神经网络框架ncnn的移植与测试开发,测试ncnn在此开发板上的性能与应用测试。
人工智能的不断发展和越来越广泛的应用,将相应地需要更先进和可扩展的基础设施来支持其开发和部署。人工智能基础设施投资的一个关键领域将是专门的数据基础设施,如矢量数据库,其设计用于存储和处理现代ML模型生成的大量数据。Liberty表示:“这将加速人工智能系统的开发和部署,这些系统在许多领域将超过上一年的应用。”
AutoEncoder的基本思想是利用神经网络来做无监督学习,就是把样本的输入同时作为神经网络的输入和输出。本质上是希望学习到输入样本的表示(encoding)。早期AutoEncoder的研究主要是数据过于稀疏、数据高维导致计算复杂度高。比较早用神经网络做AutoEncoder的可以追溯到80年代的BPNN和MLP以及当时Hinton推崇的RBM。后来到了2000年以后还坚持在做的只剩下Hinton的RBM了。从2000年以后,随着神经网络的快速兴起,AutoEncoder也得到快速发展,基本上有几条线:稀疏AutoEncoder、噪音容忍AutoEncoder、卷积AutoEncoder、变分AutoEncoder。最新的进展是结合对抗思想的对抗AutoEncoder。
深度学习是近10年机器学习领域发展最快的一个分支,由于其重要性,三位教授(Geoffrey Hinton、Yann Lecun、Yoshua Bengio)因此同获图灵奖。深度学习模型的发展可以追溯到1958年的感知机(Perceptron)。1943年神经网络就已经出现雏形(源自NeuroScience),1958年研究认知的心理学家Frank发明了感知机,当时掀起一股热潮。后来Marvin Minsky(人工智能大师)和Seymour Papert发现感知机的缺陷:不能处理异或回路等非线性问题,以及当时存在计算能力不足以处理大型神经网络的问题。于是整个神经网络的研究进入停滞期。
虽然人工智能 (AI) 模型变得越来越先进,但在传统计算机硬件上训练和运行这些模型非常耗能。因此,世界各地的工程师一直在尝试创建替代的、受大脑启发的硬件,以更好地支持人工智能系统的高计算负载。
摘要:我国高校作为电能的主要耗用者之一,存在大量使用大功率设备、学生节电意识差等问题。对高校用电量进行预测可以为高校配电网的配电计划工作提供数据参考,达到调节电量输送、节约能源的目的。鉴于此,对厦门大学漳州校区58幢宿舍楼进行随机抽样调查,并对搜集的数据基于ARMA和LSTM方法建立时间序列预测模型,预测校园宿舍未来用电量,以实现提前预警,提高大学生节电意识。实验证明,模型能够在大多数数据集上取得良好的性能表现。
摘要:某火电厂1000MM机组在不同负荷、不同工况下,脱硝精准喷氨系统各分区中有部分分区出口NOX值偏高,造成了精准喷氨系统不均匀度增加,从而直接导致了出口NOX浓度整体偏高,整体喷氨量增大。针对该情况,该火电厂引入神经网络自动控制算法对精准喷氨系统进行优化,使其能够满足日益严苛的环保标准。现针对该优化改进进行分析及讨论,以期为发电公司的技术改造提供参考意见。
人工智能(Artificial Intelligence, AI),也称智能科学,是以计算机科学、数学、心理学等为基础,运用人工智能方法进行科学研究的一门新兴科学,它主要涉及智能科学与技术产业领域。
广州2022年11月4日 /美通社/ -- 算力是当今数字时代新的核心生产力,以算力为核心的数字信息基础设施已成为国家战略性布局的关键组成部分。算力正在成为驱动产业转型升级、生产方式变革的重要动力,并不断推动加速数字中国建设的脚步。 广电五舟作为算力领域中积极的拓新者...