我们先来看看MOS关模型: Cgs:由源极和沟道区域重叠的电极形成的,其电容值是由实际区域的大小和在不同工作条件下保持恒定。 Cgd:是两个不同作用的结果。第一JFET区域和门电极的重叠,第二是 耗尽区电容
21ic讯 瑞萨电子公司日前宣布推出三款新型超级结金属氧化物场效应三极管(超级结MOSFET)(注1),具有如下的特点:600V功率半导体器件中的导通电阻X栅极电荷,适用于高速电机驱动、DC-DC转换器和DC-AC逆变器应用。这
数字电视在全球范围的应用,让消费者体验到以往CRT电视所没有的高分辨率。液晶电视则是发挥数字电视优势的下一代家电设备。因而消费者正不断需要屏幕更大、更薄、功耗更低、分辨率更高、价格更低的电视机。采用高压背
金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)是由一个金氧半(MOS)二机体和两个与其紧密邻接的P-n接面(p-n junction)所组成。自从在1960年首次证明后,MOSFET快速的发展
使用BLDC马达进行节能处处可见,可以说是尘埃落定。其挑战在于以合理的成本在马达里集成一个复杂的电子控制电路,从而为用户提供服务。优化的功率驱动电路对马达具有巨大的提升性能的潜力,功率驱动电路就像微控制
使用BLDC马达进行节能处处可见,可以说是尘埃落定。其挑战在于以合理的成本在马达里集成一个复杂的电子控制电路,从而为用户提供服务。优化的功率驱动电路对马达具有巨大的提升性能的潜力,功率驱动电路就像微控制
21ic讯 随着LED照明市场持续增长,设计人员需要能够适合有限的线路板占位面积、满足电路保护和系统可靠性要求并简化供应链物流,同时符合全球能源法规要求的解决方案。为了帮助设计人员满足这些要求,飞兆半导体公司
高效率和低待机功耗是现今开关电源设计的两大难题,由于谐振拓扑或LLC拓扑能够满足高效率的要求,因而日益流行。然而在这种拓朴中,前PFC级必须在轻负载期间保持运作,造成谐振回路中存在内循环损耗,待机功耗成为一
高效率和低待机功耗是现今开关电源设计的两大难题,由于谐振拓扑或LLC拓扑能够满足高效率的要求,因而日益流行。然而在这种拓朴中,前PFC级必须在轻负载期间保持运作,造成谐振回路中存在内循环损耗,待机功耗成为一
21ic讯 瑞萨电子公司日前宣布推出三款新型超级结金属氧化物场效应三极管(超级结MOSFET)(注1),具有如下的特点:600V功率半导体器件中的导通电阻X栅极电荷,适用于高速电机驱动、DC-DC转换器和DC-AC逆变器应用。这
我们先来看看MOS关模型: Cgs:由源极和沟道区域重叠的电极形成的,其电容值是由实际区域的大小和在不同工作条件下保持恒定。 Cgd:是两个不同作用的结果。第一JFET区域和门电极的重叠,第二是 耗尽区电容
数字电视在全球范围的应用,让消费者体验到以往CRT电视所没有的高分辨率。液晶电视则是发挥数字电视优势的下一代家电设备。因而消费者正不断需要屏幕更大、更薄、功耗更低、分辨率更高、价格更低的电视机。采用高压背
我们先来看看MOS关模型: Cgs:由源极和沟道区域重叠的电极形成的,其电容值是由实际区域的大小和在不同工作条件下保持恒定。 Cgd:是两个不同作用的结果。第一JFET区域和门电极的重叠,第二是 耗尽区电容
数字电视在全球范围的应用,让消费者体验到以往CRT电视所没有的高分辨率。液晶电视则是发挥数字电视优势的下一代家电设备。因而消费者正不断需要屏幕更大、更薄、功耗更低、分辨率更高、价格更低的电视机。采用高压背
数字电视在全球范围的应用,让消费者体验到以往CRT电视所没有的高分辨率。液晶电视则是发挥数字电视优势的下一代家电设备。因而消费者正不断需要屏幕更大、更薄、功耗更低、分辨率更高、价格更低的电视机。采用高压背
如果不用固定的时钟来初始化导通时间,而利用检测电路来有效地“感测”MOSFET (VDS) 漏源电压的第一个最小值或谷值,并仅在这时启动MOSFET导通时间,结果会是由于寄生电容被充电到最小电压,导通的电流尖峰将会
1 引言反激变换器一个典型的应用场合是在逆变器中给IGBT的驱动提供辅助电源。此时反激变换器的开关管需要有比较高的击穿电压和快的开关速度。为了降低开关损耗,开通和关段的能量也要小。BIMOSFET的一个主要的优点就
LTC 4353控制外部N沟道MOSFET来实现一个理想的二极管功能。它取代了两个高功率肖特基二极管和其相关的散热器,节省功耗和电路板面积。理想二极管的功能,允许低损失电源ORing和供应滞留应用的。LTC4353调节横跨正向
恩智浦半导体(NXP)近日推出业内首款2 mm x 2 mm、采用可焊性镀锡侧焊盘的超薄DFN (分立式扁平无引脚)封装MOSFET。这些独特的侧焊盘提供光学焊接检测的优势,与传统无引脚封装相比,焊接连接质量更好。 即将
图1是升压开关转换器电路,它有一个众所周知的问题:如果将升压转换器IC1的输入拉低来关断升压转换器,外接电感L1和正向偏置肖特基二极管D1就可以让负载继续引出电流。对于电池供电的设备来说,这是一个沉重的负载(