在过去的几十年里,音频内容已经走过了漫长的道路,从经典的电子管放大器到现代的媒体播放器,技术进步改变了数字媒体的消费方式。在所有这些创新中,便携式媒体播放器已成为消费者的首选之一,因为它们具有充满活力的音质和长电池寿命。那么它是如何工作的,它听起来是多么的好。作为一个电子发烧友,这个问题总是出现在我的脑海里。尽管扬声器技术取得了进步,但放大器方法的改进发挥了重要作用,这个问题的明显答案是D类放大器。因此,在本项目中,我们将借此机会讨论D类放大器,并了解其优点和缺点。最后,我们将构建放大器的硬件原型并测试其性能。听起来很有趣,对吗?让我们开始吧。
但是使用聚苯乙烯泡沫塑料通常需要大量的加热元件工具,这些工具价格昂贵,对于业余爱好者来说是遥不可及的。这里最好的选择是自己创建一个加热的泡沫塑料切割工具,因为大多数在线教程都遵循使用固定电源的方法,它们将用户体验限制在电线的长度上。因此,在本教程中,我们将使用镍铬合金线制作便携式泡沫切割工具。
当我们在家里做一个定制的RGB LED设置时,基本上它是一堆可寻址的5v LED WS2812,但不幸的是,我们没有一个高电流的电源来正确地点亮它们。因为有很多,它需要大约9安培的电流来照亮全亮度。这导致我们设计一个电源为这个目的,以及gerber是共享的,所以如果有人想做这个电源,他们可以很容易地做到这一点。
提供业界领先的低通态电阻,使电池储能和电源设备应用的电路设计更加简化,性能得到提升。
【2024年11月25日, 德国慕尼黑讯】为了满足AI服务器和电信领域的安全热插拔操作要求,MOSFET必须具有稳健的线性工作模式和较低的 RDS(on) 。英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出的新型OptiMOS™ 5 Linear FET 2解决了这一难题,这款MOSFET专为实现沟槽 MOSFET的RDS(on)与经典平面 MOSFET 的宽安全工作区(SOA)之间的理想平衡而设计。该半导体器件通过限制高浪涌电流防止对负载造成损害,并因其低RDS(on) 而能够在工作期间将损耗降至最低。与上一代产品OptiMOS™ Linear FET相比,OptiMOS™ Linear FET 2改善了高温下的 SOA、降低了栅极漏电流,并扩大了封装选择范围。
DC-DC转换器是一种机电设备或电路,用于根据电路要求将直流电压从一个电平转换到另一个电平。作为电力转换器家族的一部分,DC-DC转换器可用于小电压应用,如电池,或高电压应用,如高压电力传输。
由于 SiC MOSFET 尺寸紧凑、效率更高,并且在高功率应用中具有卓越的性能,因此目前正在开关应用中取代 Si 器件。 SiC 器件可实现更快的开关时间,从而显着降低开关损耗。这些优势源于 SiC 器件独特的电气和材料特性——MOSFET 体二极管结构固有的快速反向恢复,这削弱了 SiC MOSFET 的优势。在快速反向恢复事件期间,设备可能会经历较大的电压尖峰,从而给设备和整个系统带来风险。其他设计挑战包括增加的电磁干扰 (EMI) 和意外故障,例如假栅极事件或寄生导通 。幸运的是,您可以减轻这些影响,从而优化系统性能。
面向空调、家电和工厂自动化等工业电机驱动装置和充电站、储能系统、电源等能源应用的功率控制
综合自中汽协、EVvolumes.com的多方数据,新能源汽车行业增长势头强劲。我国2021、2022、2023年新能源汽车销量分别为350万辆、689万辆、950万辆,市场占有率31.6% 预计2024年产销量1200-1300万辆,市占率超过45%;约占全世界产销量60%。
数据中心、电动汽车基础设施和工业设备中高效电源解决方案的理想选择
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
开关电源一般由脉冲宽度调制PWM控制IC和MOSFET构成,控制开关管时间比率维持稳定的输出电压。
一直以来,MOSFET都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来MOSFET的相关介绍,详细内容请看下文。
在导通特性方面,IGBT的导通损耗由器件导通时的压降造成,其参数为Vce(sat),随温度变化较小。而SiC MOSFET的导通特性表现得更像一个电阻输出特性,具有更小的导通损耗,特别是在电流较小的情况下2。
双管正激式开关电源是一种常见的电源拓扑结构,采用了两个功率开关管进行功率调节。在这篇文章中,我将详细解释双管正激式开关电源的原理、工作方式以及其应用领域。
在下述的内容中,小编将会对MOSFET的相关消息予以报道,如果MOSFET是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
一直以来,MOSFET都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来MOSFET的相关介绍,详细内容请看下文。
MOSFET驱动电路将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。
今天,小编将在这篇文章中为大家带来MOSFET驱动电路的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
本文中,小编将对MOSFET负载开关予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。