得益于固态电路保护,直流母线电压为400V或以上的电气系统(由单相或三相电网电源或储能系统(ESS)供电)可提升自身的可靠性和弹性。在设计高电压固态电池断开开关时,需要考虑几项基本的设计决策。其中关键因素包括半导体技术、器件类型、热封装、器件耐用性以及电路中断期间的感应能量管理。在本文中,我们将讨论在选择功率半导体技术和定义高电压、高电流电池断开开关的半导体封装时的一些设计注意事项,以及表征系统的寄生电感和过流保护限值的重要性。
专为下一代电动汽车基础设施而设计,为高能效车载充电和逆变器提供结构紧凑的单元件解决方案
碳化硅 (SiC) MOSFET 因其技术固有的特性(例如高电压能力、较低的导通电阻、耐高温操作以及相对于硅更高的功率密度)而越来越受到电源系统设计人员的欢迎。因此,基于 SiC 的转换器和逆变器是电池供电车辆 (BEV)、可再生能源以及需要最高效率的所有其他应用的最佳选择。
近年来,电力电子应用中越来越多地从硅转向碳化硅 (SiC) 和氮化镓 (GaN)。在过去的十年中,后者已被委托给SiC和GaN半导体,这无疑为电气化和强劲的未来铺平了道路。由于其固有特性,宽带隙半导体在许多电力应用中正在逐步取代传统的硅基器件。硅现在已经风光无限,其应用的可靠性一直非常高。现在,有必要验证这两种新型半导体从长远来看是否可以提供相同的安全前景,以及它们在未来是否对设计人员来说是可靠的。
在快速发展的电力电子领域,热管理已成为确保设备可靠性、效率和寿命的关键因素。这对于电动汽车等能源密集型行业尤其重要,其中碳化硅(SiC) 和氮化镓 (GaN) 电子电路解决方案(例如逆变器、转换器和充电电路)正在彻底改变这一领域。
Dec. 10, 2024 ---- 根据TrendForce集邦咨询最新研究,2024年第三季度全球电动车牵引逆变器总装机量达687万台,虽季增7%,但增长幅度较去年同期已有缩减。其中,PHEV牵引逆变器的装机量季增16%,虽然低于前一季的35%,但仍是所有动力模式中增幅最高的。
【2024年11月18日, 德国慕尼黑和阿姆斯特丹讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)和Stellantis N.V. 近日宣布,双方将共同开发Stellantis电动汽车的功率架构,助力Stellantis实现为大众提供环保、安全、经济实惠的出行方式这一远大目标。
面向空调、家电和工厂自动化等工业电机驱动装置和充电站、储能系统、电源等能源应用的功率控制
与普通产品相比,可确保约1.3倍的爬电距离。即使是表贴型也无需进行树脂灌封绝缘处理
综合自中汽协、EVvolumes.com的多方数据,新能源汽车行业增长势头强劲。我国2021、2022、2023年新能源汽车销量分别为350万辆、689万辆、950万辆,市场占有率31.6% 预计2024年产销量1200-1300万辆,市占率超过45%;约占全世界产销量60%。
全球知名半导体制造商罗姆生产的EcoSiC™产品——SiC MOSFET和SiC肖特基势垒二极管(以下简称“SBD”),被日本先进电源制造商COSEL CO., LTD. (以下简称“科索”)生产的三相电源用3.5kW输出AC-DC电源单元“HFA/HCA系列”采用。强制风冷型“HFA系列”和传导散热型“HCA系列”均搭载了罗姆的SiC MOSFET和SiC SBD,从而实现了最大94%的工作效率。“HCA系列”于2023年开始量产和销售,“HFA系列”于2024年开始量产和销售。
数据中心、电动汽车基础设施和工业设备中高效电源解决方案的理想选择
在导通特性方面,IGBT的导通损耗由器件导通时的压降造成,其参数为Vce(sat),随温度变化较小。而SiC MOSFET的导通特性表现得更像一个电阻输出特性,具有更小的导通损耗,特别是在电流较小的情况下2。
效率和功率密度都是电源转换器设计中的重要因素。每个造成能量损失的因素都会产生热量,而这些热量需要通过昂贵且耗电的冷却系统来去除。软开关和碳化硅 (SiC) 技术的结合可以提高开关频率,从而可以减小临时存储能量的无源元件的尺寸和数量,并平滑开关模式转换器的输出。SiC 还为产生更少热量并利用更小散热器的转换器提供了基础。
宽带隙 (WBG) 半导体器件,例如碳化硅 (SiC) 场效应晶体管 (FET),以其最小的静态和动态损耗而闻名。除了这些特性之外,该技术还可以承受高脉冲电流,在固态断路器等应用中特别有优势。本文深入探讨了 SiC FET 的特性,并与传统硅解决方案进行了比较分析。
碳化硅 (SiC) 和氮化镓 (GaN) 宽带隙 (WBG) 技术因其在许多高功率领域优于硅 (Si) 的性能而闻名,包括其高效率和高开关频率。然而,与单晶硅不同,SiC 和 GaN 具有独特的设计和应用问题,工程师在将这些技术用于设计时需要解决这些问题。
通过开发车载功率模块,助力xEV技术创新
压缩机是汽车空调的一部分,它通过将制冷剂压缩成高温高压的气体,再流经冷凝器,节流阀和蒸发器换热,实现车内外的冷热交换。传统燃油车以发动机为动力,通过皮带带动压缩机转动。而新能源汽车脱离了发动机,以电池为动力,通过逆变电路驱动无刷直流电机,从而带动压缩机转动,实现空调的冷热交换功能。
CISSOID与南京航空航天大学自动化学院电气工程系达成深度战略合作协议,建立联合电驱动实验室,共同开展相关前沿技术的研究开发
切换电容器接触器、晶闸管投切电容器装置(Tsc)、复合开关投切电容器装置作为工业低压系统中常用的电容器投切装置 ,在可靠性、体积、能耗、寿命等方面各有不同的缺陷 。鉴于第三代半导体材料sic已在电力电子器件中大量使用 ,试图通过新型材料电力电子器件的选用和对交流接触器的适应性设计 ,提出新的电容器投切装置方案 ,并通过MATLAB仿真验证方案。